Plugins that work with Commands in Sibelius Ultimate 2021.2 and Later

Bob Zawalich 27 February 2021

The Execute Commands Plugin

Execute Commands - Version 01.13.04 - by Bob Zawalich

have the extension “.dat",

Add commands to a list, then choose Execute to run them after the dialog comes down.

You can also generate a new plugin that contains the commands in the Command List. Click New Plugin... fer details.

You can export or import a list of commands. The exported files will be stored in a subfolder of your default Scores folder called “Execute_Commands”, and will

Command categories Find in list ¥ | move down Find
All Add interval 2nd above - Id: |m0ve_down_chromatically
Appearance tab Add interval 3rd above
File tab Add interval 4th above Add Command To Command List ¥
Home tab Add interval 5th above .
Keyboard Window Add interval 6th above Flip
Keypad (accidentals) Add interval 7th above Color .
Keypad (all Add interval 9th above Mave Down Chromatically
Keypad (articulations) Add interval an octave above Mave Down Chromaticall
Keypad (beams/tremolos) Add unison
Keypad (common notes) Advance Caret
Keypad (jazz articulations) Arrange
Keypad (more notes) Create A
Layout tab Create B
Maving Create C
Navigation Create D
i Create E
[Nttt Comer
eheads Create G
Other Edit Arrange Styles I Remove selected command & I
Parts tab Flexi-time Input
Play t:ab Flexi-time Options Upa Down ¥
Plug-ins
Review tab r Move Down Chromatically Trace List &
Selection Move Down a Staff
Text tab Move Up Chromatically -
Tuplets Move Up a Staff Export List & ..
View tab Maove to Original Staff
Zoom Re-input Pitches Import List & ...
Repeat
Respell Accidental/Edit Text New Plugin...
Slide notes or rests left
Slide notes or rests right W Cancel Execute

The goal of the Execute Commands plugin is to make it easier to create "Command macros" or simple plugins
that use the commands added in Sibelius Ultimate version 2021.2, without having to directly write code.

When you run the plugin you will see the dialog above, There are 3 listboxes.
The first 2 are very similar to the listboxes in File>Preferences>Keyboard Shortcuts.

1. The Command Categories list
2. The Commands in Category list

If you change the category in the first list box the Commands in Category list will be filled with the commands
from that category.

When a command or category changes, the "Id:" edit box will be filled with the language-independent
"Command Id" that corresponds to the selected command name. Some commands, notably the Plug-ins
category will have no available Command Id. The Command Id is placed in an edit box to make it easier to copy
it for use in other plugins.

The 3rd and rightmost listbox is the Command List. You can add the command that is currently selected in
the Commands in Category list to the bottom of the Command List by activating the Add Command to

Command List button. This is almost always the default button, so you can usually just type Enter to add a
command.

You can delete the selected entry in the Command List using Remove Selected Command. Move the
selected command up or down in the Command List with the Up and Down buttons.

These controls should let you add and rearrange the commands in the Command List.

Once you have the commands the way you want them in the Command List, you can
¢ Execute the full set of commands with the Execute button. This will take down the dialog after
running the commands.
¢ Export the list of commands to a text file (with .dat extension) with Export List...", which will be
stored in the "Execute_ Commands" subfolder which will be added to your default Scores folder.
¢ Import any of the text files you have exported Import List...", which will replace the contents of the
Command List
e Trace the contents of the list with Trace List. This will trace the commands 3 ways:
o The commands as shown in the list box
o Plugin instructions for those commands, using language-dependent command names.
o Plugin instructions for those commands, using language-independent command ids, where
possible.

o Here are the Traced lines for the list shown in the dialog above. Commands that are plugins have
a different form, but we will discuss that later.

Flip

Color

Move Down Chromatically
Move Down Chromatically
Move Down Chromatically

Sibelius.Execute(Cmd("Flip"));
Sibelius.Execute(Cmd("Color"));
Sibelius.Execute(Cmd("Move Down Chromatically"));
Sibelius.Execute(Cmd("Move Down Chromatically"));
Sibelius.Execute(Cmd("Move Down Chromatically"));

Sibelius.Execute("flip"); // Flip

Sibelius.Execute("color"); // Color
Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically
Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically
Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically

¢ Generate a plugin file using NewPlugin...

o This will take the commands in the Command List and write out a new plugin file that will
execute these commands. This will save you from having to get the ManuScript syntax correct
among other things.

o The plugin file will be added to any of the plugin subfolders you have on your machine. The
plugin will create an Execute_Commands subfolder in your user Plugins folder as a
convenient place to keep such plugins.

o You will need to close and restart Sibelius in order to run the new plugin or edit it in the
Sibelius plugin editor.

Execute Commands - Generate and Install Mew Plugin - Version 01.13.02

Generate a new plugin that will run the commands specified in the Command List.

Enter the file name (no spaces), the name that appears on the plugin menu (it should usually be the file name
with spaces between words), and the plugin category(subfolder) where the new plugin will be installed.

The generated plugin uses Sibelius.Execiute commands that can either use a language-independent command
id, (the default) or a language-dependent, but possibly more readable local command name,

You will need to close and restart Sibelius before you can edit or run the new plugin.

Name (without spaces): |

Menu name: |t st utils |

Categery (subfolder) name:

ArpeggioOffsets ~
Bagpipes

Banjo

Bar Object Properties

Batch Processing

ChangeMoteDurations

Chord Symbols

Clipboards

Color o
Color Notehead Styles Format of Sibelius.Execute statements
Composing Tools ®) <command ids>

Delete (O Cmd(<local command namez)
Developers' Tools
Downloads New

The New Plugin dialog in Execute Commands

Try the Find box in Execute Commands. It is really cool. You can type in any part of a command name, and it
will try to find it in the All Commands list. If it finds a match, it looks up the category for the command and
switches over the list boxes to be in that category. This way you can both find all the similar command names
and see their category as well.

Language issues

If you are running commands from the Ribbon, or add several commands to the Command List in Execute
Commands and then choose Execute, you can use the command names as they are shown, translated into
the current language.

If you export and import macros, or create new plugins, then the command names will only work if you are
running on a machine in the same language. This is probably how it will be most of the time.

However, if you have a set of useful macros files, or plugins that used Commands, and want to share them with
someone running Sibelius in another language, the command names will not be recognized.

"Move Down Chromatically" will not be found on a German machine.

To deal with this problem, command names are also given language -independent Command Ids.
If your plugin uses Command Ids, it will run in any language.

The problem is that to use them you have to know the command id that corresponds to a specific local
command name. Trace List in Execute Commands will map these for you automatically when possible, so
in the example about you see:

Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically

"move_down_chromatically” in the Command Id for "Move Down Chromatically", or its equivalent in any
other language.

If you need to find the mapping, Sibelius provides a list. You can also use the plugin Execute Command Ids
To Names Plugin, which will trace out a set of comma separated fields showing the Command Id,
Command Name, and Category for all commands that have Command Ids. It is intended to be loaded
into a spreadsheet and sorted as desired.

Commands that are plugins do not have command ids.

If, for example, you want to write a macro that runs several plugins in a row, you cannot call
Sibelius.Execute(Cmd("Plugin menu name"));

because the Cmd() function will return an empty string for plugin command names.

The way I am getting around this is that I added a routine called RunPluginFromCommandName to the
shipping utils.plg plugin

In Execute Commands when I need to output an instruction for a plugin I generate a call to
utils.RunPluginFromCommandName, such as

utils.RunPluginFromCommandName(‘Add Capo Chord Symbols (Plug-in 818)");

The disadvantage of this method is that it only knows the local command name (since there are no Command
Ids for plugin commands), and saved plugins or macros that use calls to shipping plugins will only run in the
language in which they were written. But they do at least run in the original language, and calls to non-shipping
plugins, which generally do not have their menu names translated, should work in any language,

The Run Command Macro plugin

Run Command Macro - Version 02.10.10 - by Bob Zawalich

Command macros to run
Run the command macro selected in the list.

1-pob3

2{lip Type the shortcut (the first number in a list
3FlipColorMoveDown entry), or select the entry with the mouse, then
4FlipColorPlug click Run or type Enter.

Smnove left

"Run macro if list box changes” runs a macro if
you click, arrow, or type in the list box.

The first list box entry is a placeholder to
support the “Run macro if list box changes™
option. You will need to select a different entry
to run a macro.

[] Run macro if list box changes

Cancel | | Run macro |

This plugin provides a more convenient way to run macros you created by using Export List... in Execute
Commands.

The list will contain any data files that you exported. Each has a number shortcut in the list.
You can select an entry in the list and then click on Run Macro, and the macro will be executed.

If you check the Run macro if list box changes checkbox, then typing a numeric shortcut or clicking on a
list entry or arrowing up or down in the list will immediately run that macro. This is a little tricky to get to work
as you want, but it is very fast when it is done correctly.

Entry "0" in the list is a placeholder. You can't run it, and it is only there to work around problems with the
implementation of list boxes when Run macro if list box changes is checked.

The Execute Command Ids To Names Plugin

If you use Trace List or New Plugin in Execute Commands, it will try to translate the local command
names into Command Ids. I think this is the easiest way to map a command name to a Command Id.

However, there is a document that gives the command names and command ids, and there is also the plugin
Execute Command Ids To Names.

It gives you a list of all the supported command ids. Selecting a list entry will display its name and category,
and if you use Trace All Commands, it will write out the command id, command name, and category for each

command id.

My intention is that you could copy this into a spreadsheet, and then sort the columns as you wish, so you can
get the list ordered several different ways.

Execute Command |ds To Mames - Version 01.13.02 - by Bob Zawalich ‘

This list box contains the language-independent command ids for commands used by the Sibelius.Execute instruction.
When a list entry is selected, the corresponding command name in the current language and its category will be listed.

.
Tracing will write a comma-separated line of text of the form command id, command name, category. 1n C
The intention is to provide a quick mapping from a command id to its local name. e a
e
e — . elected
Find in list ¥ Find
a1d

128th_note ~) I'l."l

16_tremolos Current command: local name and category v v SN n v n v
16th_note P e - { f

256th_note 128th note Ii e ! |
2_tremolos Keypad (more notes) | —— ——
32_tremolos

3nd_note

4 tremolos Trace Current Command s VR VR Y wm N AV AV
512th_note —

Bdth_note | [— !

a1 - | Trace All Commands » — —1 I I I]

_tremolos — h

&th_note - o

accent

accessibility_preferences

acciacatura

add_/_remove_chord_diagram

add_/_remove_chord_text record live tempo,Record Live Tempo,Play tab

add_/_remove_chord_text_root record with_audiocscore,Record with RudicScore,File tak

add 2nd above redo, Redo, Home tab

sdd 3rd above redo_dialog,Rede History,Heome tab

add_4th_above remove_accidental,Remove accidentals,Heypad (accidentals)

- remove_articulation, Remove articulations,KHeypad (articulations)

add_5th_above remove_staves, Remove Staves,Home tab

add_bth_above repeat, Repeat, Hote Input tab

add_Tth_above
add_9th_above
add_bar_at_end
add_multiple_bars
add_octave_above
add_ossia_above
add_ossia_below

all command ids with
their local command

name and category
in comman
separated lines.

repeat_2_bars,2 bar Repeat Bar,Keypad (jazz articulaticons)
repeat_4_bars, 4 bar Repeat Bar,Keypad (jazz articulations)

repeat bar,Repeat Bar,Keypad (jazz articulations)
repeat_interpretation,Repsats, Play tab

repitch,Re-input Pitches,Ncte Input tak

replay, Replay, Play tab

reset_beam groups,Reset Beam Groups,hppearance tab

reset_design,Reset Design,Appearance tab

reset_magnetic_layout,Use default Magnetic Layout settings,Layout tab
reset_note_spacing,Reset Note Spacing,lppearance tab
reset_position,Reset Position,Rppearance tab

reset_space_above staff,Reset Space Rbove 3taff, Layout tab
reset_space_below staff,Reset Space Below Staff, Layout tab
reset_stems_and beam positions,Reset 5tems and Beam Positions, Appearance te
reset_tab fingering,Reset Guitar Tab Fingering,Appearance tab
reset_to_score_design,Reset to Score Design,Appearance tab
reset_to_score_position,Reset to Score Position,Appesarance tab

[] Trace function calls

i

S | Fdi# Darrana | Cancart nitch | S#aff cizar 024" |

The Trace Current Command button will trace the command id, command name, and category for each of the
currently selected command id, and it will also trace Sibelius.Execute instructions for the command, for

copying into a plugin you are writing.

Here is an example of the output for Trace Current Command for the "engraving_rules" Command ID.

Note that the command that uses the Command Name displays the Command Id in a comment, and the one
that uses the Command Id shows the Command Name in a comment.

engraving_rules,Engraving Rules,Appearance tab
Sibelius.Execute("engraving_rules"); // Engraving Rules
Sibelius.Execute(Cmd("Engraving Rules")); // engraving_rules

A Plugin that incorporates Commands, but is not simply sequences of commands

e MoveHighLowCrossStaff

Mowve High Low Cross Staff - Version 01.06.00 - by Bob Zawalich

Mowe selected notes cross staff if possible, based on the checkbox options.

* Move to the staff above if the highest note in a note or chord has too many ledger lines above the staff.
* Move to the staff below if the lowest note has too make ledger lines below the staff.
* If both the high note and low note are in range, reset the note or chord to the original staff,

Move to staff above if

IZI or more ledger lines above staff

Maove to staff below if

or more ledger lines below staff

Reset staff if notes are within range Cancel | QK |

o This will move selected notes that are in staves that are appropriate sources for cross staff beaming to
the staff above if the highest note in the note or chord has too many ledger lines, or moves to the lower
staff is there are too many ledger lines below the staff.

o It uses the commands

o Cross_stave_move_up
o cross_stave_move_down
o Cross_stave reset

