
Plugins that work with Commands in Sibelius Ultimate 2021.2 and Later
Bob Zawalich 27 February 2021

The Execute Commands Plugin

The goal of the Execute Commands plugin is to make it easier to create "Command macros" or simple plugins
that use the commands added in Sibelius Ultimate version 2021.2, without having to directly write code.

When you run the plugin you will see the dialog above, There are 3 listboxes.
The first 2 are very similar to the listboxes in File>Preferences>Keyboard Shortcuts.

1. The Command Categories list
2. The Commands in Category list

If you change the category in the first list box the Commands in Category list will be filled with the commands
from that category.

When a command or category changes, the "Id:" edit box will be filled with the language-independent
"Command Id" that corresponds to the selected command name. Some commands, notably the Plug-ins
category will have no available Command Id. The Command Id is placed in an edit box to make it easier to copy
it for use in other plugins.

The 3rd and rightmost listbox is the Command List. You can add the command that is currently selected in
the Commands in Category list to the bottom of the Command List by activating the Add Command to

Command List button. This is almost always the default button, so you can usually just type Enter to add a
command.

You can delete the selected entry in the Command List using Remove Selected Command. Move the
selected command up or down in the Command List with the Up and Down buttons.

These controls should let you add and rearrange the commands in the Command List.

Once you have the commands the way you want them in the Command List, you can

• Execute the full set of commands with the Execute button. This will take down the dialog after
running the commands.

• Export the list of commands to a text file (with .dat extension) with Export List…", which will be
stored in the "Execute_Commands" subfolder which will be added to your default Scores folder.

• Import any of the text files you have exported Import List…", which will replace the contents of the
Command List

• Trace the contents of the list with Trace List. This will trace the commands 3 ways:
o The commands as shown in the list box
o Plugin instructions for those commands, using language-dependent command names.
o Plugin instructions for those commands, using language-independent command ids, where

possible.

o Here are the Traced lines for the list shown in the dialog above. Commands that are plugins have

a different form, but we will discuss that later.

Flip
Color
Move Down Chromatically
Move Down Chromatically
Move Down Chromatically

Sibelius.Execute(Cmd("Flip"));
Sibelius.Execute(Cmd("Color"));
Sibelius.Execute(Cmd("Move Down Chromatically"));
Sibelius.Execute(Cmd("Move Down Chromatically"));
Sibelius.Execute(Cmd("Move Down Chromatically"));

Sibelius.Execute("flip"); // Flip
Sibelius.Execute("color"); // Color
Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically
Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically
Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically

• Generate a plugin file using NewPlugin…
o This will take the commands in the Command List and write out a new plugin file that will

execute these commands. This will save you from having to get the ManuScript syntax correct
among other things.

o The plugin file will be added to any of the plugin subfolders you have on your machine. The
plugin will create an Execute_Commands subfolder in your user Plugins folder as a
convenient place to keep such plugins.

o You will need to close and restart Sibelius in order to run the new plugin or edit it in the
Sibelius plugin editor.

The New Plugin dialog in Execute Commands

Try the Find box in Execute Commands. It is really cool. You can type in any part of a command name, and it
will try to find it in the All Commands list. If it finds a match, it looks up the category for the command and
switches over the list boxes to be in that category. This way you can both find all the similar command names
and see their category as well.

Language issues

If you are running commands from the Ribbon, or add several commands to the Command List in Execute
Commands and then choose Execute, you can use the command names as they are shown, translated into
the current language.

If you export and import macros, or create new plugins, then the command names will only work if you are
running on a machine in the same language. This is probably how it will be most of the time.

However, if you have a set of useful macros files, or plugins that used Commands, and want to share them with
someone running Sibelius in another language, the command names will not be recognized.

"Move Down Chromatically" will not be found on a German machine.

To deal with this problem, command names are also given language -independent Command Ids.
If your plugin uses Command Ids, it will run in any language.

The problem is that to use them you have to know the command id that corresponds to a specific local
command name. Trace List in Execute Commands will map these for you automatically when possible, so
in the example about you see:

Sibelius.Execute("move_down_chromatically"); // Move Down Chromatically

"move_down_chromatically" in the Command Id for "Move Down Chromatically", or its equivalent in any
other language.

If you need to find the mapping, Sibelius provides a list. You can also use the plugin Execute Command Ids
To Names Plugin, which will trace out a set of comma separated fields showing the Command Id,
Command Name, and Category for all commands that have Command Ids. It is intended to be loaded
into a spreadsheet and sorted as desired.

Commands that are plugins do not have command ids.

If, for example, you want to write a macro that runs several plugins in a row, you cannot call
Sibelius.Execute(Cmd("Plugin menu name"));

because the Cmd() function will return an empty string for plugin command names.

The way I am getting around this is that I added a routine called RunPluginFromCommandName to the
shipping utils.plg plugin

In Execute Commands when I need to output an instruction for a plugin I generate a call to
utils.RunPluginFromCommandName, such as

utils.RunPluginFromCommandName('Add Capo Chord Symbols (Plug-in 818)');

The disadvantage of this method is that it only knows the local command name (since there are no Command
Ids for plugin commands), and saved plugins or macros that use calls to shipping plugins will only run in the
language in which they were written. But they do at least run in the original language, and calls to non-shipping
plugins, which generally do not have their menu names translated, should work in any language,

The Run Command Macro plugin

This plugin provides a more convenient way to run macros you created by using Export List… in Execute
Commands.

The list will contain any data files that you exported. Each has a number shortcut in the list.

You can select an entry in the list and then click on Run Macro, and the macro will be executed.

If you check the Run macro if list box changes checkbox, then typing a numeric shortcut or clicking on a
list entry or arrowing up or down in the list will immediately run that macro. This is a little tricky to get to work
as you want, but it is very fast when it is done correctly.

Entry "0" in the list is a placeholder. You can't run it, and it is only there to work around problems with the
implementation of list boxes when Run macro if list box changes is checked.

The Execute Command Ids To Names Plugin

If you use Trace List or New Plugin in Execute Commands, it will try to translate the local command
names into Command Ids. I think this is the easiest way to map a command name to a Command Id.

However, there is a document that gives the command names and command ids, and there is also the plugin
Execute Command Ids To Names.

 It gives you a list of all the supported command ids. Selecting a list entry will display its name and category,
and if you use Trace All Commands, it will write out the command id, command name, and category for each
command id.

My intention is that you could copy this into a spreadsheet, and then sort the columns as you wish, so you can
get the list ordered several different ways.

The Trace Current Command button will trace the command id, command name, and category for each of the
currently selected command id, and it will also trace Sibelius.Execute instructions for the command, for
copying into a plugin you are writing.

Here is an example of the output for Trace Current Command for the "engraving_rules" Command ID.

Note that the command that uses the Command Name displays the Command Id in a comment, and the one
that uses the Command Id shows the Command Name in a comment.

engraving_rules,Engraving Rules,Appearance tab
Sibelius.Execute("engraving_rules"); // Engraving Rules
Sibelius.Execute(Cmd("Engraving Rules")); // engraving_rules

A Plugin that incorporates Commands, but is not simply sequences of commands

• MoveHighLowCrossStaff

o This will move selected notes that are in staves that are appropriate sources for cross staff beaming to
the staff above if the highest note in the note or chord has too many ledger lines, or moves to the lower
staff is there are too many ledger lines below the staff.

o It uses the commands

o cross_stave_move_up

o cross_stave_move_down

o cross_stave_reset

