
1

Tutorial: Execute Commands and cmdutils
Communicating between Cmdutil Commands

Bob Zawalich June 22, 2021

Sibelius Commands just run. They take no input and they return no values. you need to be sure to set the
score up so the commands will have what they need, and you have to assume that they worked.

If you need more communication than that, you can write a ManuScript plugin that calls commands, and you
can sometimes indirectly find out what happened, or when feasible, just write a conventional ManuScript
plugin.

Cmdutils Commands can take fixed strings of text as parameters. They return useful values when called by
plugins, but in macros they do not return any information to the next command that runs.

Here are a few ways that Cmdutils Commands can provide information to succeeding commands.

AddSelect_ commands

AddSelect_ commands create an object, and once created, they change the selection so that only the new
object is selected. Since commands apply to the current selection, you will know that either the new object will
be the only thing selected, or the selection will be cleared on failure.

If there is a selection, then only the new object will be selected, so you can manipulate it if you have appropriate
commands, such as the SetTextFormat commands for a text object.

You can save the current selection before running an AddSelect_ command, and restore it afterward, so you
could manipulate the new objects, and then put the selection back, like this:

SaveSelection_cu()
AddSelect_Text_Technique_cu(I am a bold one!)
SetTextFormat_Bold_cu()
RestoreSelection_cu()

You really cannot know for sure that the AddSelect_ command was successful, but you could test the
selection with one of the Command Exit commands.

Here are the current AddSelect commands

AddSelect _Line_cu(styleTextOrId)

AddSelect _Line_8va_cu()
AddSelect _Line_Box_cu()
AddSelect_Line_Bracket_Vertical_Left_cu()
AddSelect_Line_Bracket_Vertical_Right_cu()
AddSelect_Line_Ending_First_cu()
AddSelect_Line_Ending_Second_cu()
AddSelect_Line_Hairpin_Crescendo_cu()
AddSelect_Line_Hairpin_Diminuendo_cu()
AddSelect_Line_Plain_cu()
AddSelect_Line_Slur_cu()
AddSelect_Line_Trill_cu()
AddSelect_Line_Vertical_cu()

AddSelect_StaffSymbol_cu (nameOrIndexSymbol)
AddSelect_SystemSymbol_cu (nameOrIndexSymbol)

2

AddSelect_Text_cu(strText)
• Adds text using the text style that was set by running the TextStyleDefaultForCommands _cu(styleTextOrId)
command, or adds Technique text if the text style is not set.
• It is best to always run TextStyleDefaultForCommands _cu immediately before running this command.

AddSelect_Text_Dynamics_cu (strText)
AddSelect_Text_Expression_cu (strText)
AddSelect_Text_Technique_cu (strText)

Command Exit commands

These routines will check for an empty or non-passage selection, or a passage selection that does not include
specific staves or bars, or whether a plugin is installed. If found, they will give a warning and either Exit, or ask
if you want to continue, possibly after selecting the entire score. This these commands communicate data about
the current state of the selection, and perform some action if the selection is not what you want.

In the example above, we know that if an AddSelect_ command fails, there will be no selection. We can follow

AddSelect_Text_Technique_cu(I am a bold one!)

with

ExitIfSelection_Empty_cu(The text could not be added, and the selection is empty. The plugin
or macro will now exit.)

So we could have:

SaveSelection_cu()
AddSelect_Text_Technique_cu(I am a bold one!)
ExitIfSelection_Empty_cu(The text could not be added, and the selection is empty. The plugin or macro will now exit.)
SetTextFormat_Bold_cu()
RestoreSelection_cu()

You could also leave out ExitIfSelection_Empty_cu, and the plugin would continue as if you had never run
the AddSelect command, since the original selection would be restored. What you do depends on your
tolerance for not knowing why the text was not added.

Here are the current Command Exit commands

ContinueIfSelection_Empty_cu(Nothing is selected. Choose Yes to continue, No to stop the plugin.)

ExitIfPlugin_Unavailable_cu(Resize Bar)

ExitIfSelection_Avoid_BottomStaff_cu(The selection may not include the bottom staff in the score. This plugin will now exit.)
ExitIfSelection_Avoid_FirstBar_cu(The selection may not include the first bar in the score. This plugin will now exit.)
ExitIfSelection_Avoid_GrandStaff_Bottom_cu(The bottom staff of the selection may not be the bottom staff of a multi-staff
instrument. This plugin will now exit.)
ExitIfSelection_Avoid_GrandStaff_Top_cu(The top staff of the selection may not be the top staff of a multi-staff instrument.
This plugin will now exit.)
ExitIfSelection_Avoid_LastBar_cu(The selection may not include the last bar in the score. This plugin will now exit.)
ExitIfSelection_Avoid_TopStaff_cu(The selection may not include the top staff in the score. This plugin will now exit.)

ExitIfSelection_Empty_cu(Nothing is selected. This plugin will now exit.)

ExitIfSelection_Needs_FullSelect_cu(The selection must have all bars fully selected. This plugin will now exit.)
ExitIfSelection_Needs_GrandStaff_All_cu(The selection must include all the staves of a multi-staff instrument, including
ossias. This plugin will now exit.)
ExitIfSelection_Needs_GrandStaff_Any_cu(The selection must include only staves of a single multi-staff instrument,
including ossias. This plugin will now exit.)
ExitIfSelection_Needs_OneStaff_cu(The selection must include only a single staff. This plugin will now exit.)

3

ExitIfSelection_NotPassage_cu(A passage selection is required. This plugin will now exit.)

ExitOrAll_Selection_Empty_cu(Nothing is selected. Reply Yes to select all and continue, or No to exit.)
ExitOrAll_Selection_NotPassage_cu(A passage selection is required. Reply Yes to select all and continue, or No to exit.)

ExitPlugin_cu()

Parameter Variables

Parameters can only be changed if you edit the command itself. What if you want to be able to have the
parameter change while a macro is running? Parameter variables provide a way to pass user input to a
Cmdutils Command.

GetUserInput_cu(variableName), will put up a dialog you can type into, and will store the result in a
parameter variable whose name is the parameter of GetUserInput_cu. A parameter variable, for our
purposes, is a name that can hold a value.

For GetUserInput_cu, the name of the variable is its parameter and the value is the text that you type into
the edit box . If I ran GetUserInput_cu(strVariableName), and typed in this text:

there would now be a variable with the name strVariableName that holds the value “This is text that will be
saved in strVariableName”.

The parameter variable strVariableName will exist with its current value until the end of the Sibelius session
in which it is created. If you try to use it in the next session without calling GetUserInput_cu first, the
variable strVariableName will resolve to the text strVariableName. So don’t do that!

You can have any number of parameter variables, all with different names. If you use GetUserInput_cu with
the same variable name, it will overwrite the previous setting.

The names of variables you create with GetUserInput_cu can be used as the parameter in any
_cu command that takes a parameter.

After running GetUserInput_cu(strVariableName), you could use any of these commands with
strVariableName as a parameter:

Add_Text_Technique_cu(strVariableName)
Trace_cu(strVariableName)
MessageBoxYesNo_cu(strVariableName)

// These would need properly formatted text in strVariableName
ApplyNamedColor_cu(strVariableName)
AddInterval_Down_Diatonic_cu(strVariableName)
SetXOffsets_Left_Absolute_cu(strVariableName)

The text that is saved needs to be appropriate to the command using it. Add_Text_Technique_cu,
Trace_cu, and MessageBox_cu will work with any text, but ApplyNamedColor_cu needs a specific valid
color name, and the others need numbers, so be aware of what text the variable holds.

4

This gives you the ability to create a macro or plugin that will accept small amounts of text input without
needing to call a plugin with a big dialog.

An Example of using a parameter variable

You could write something like this, to get an offset value to use in the command
SetXOffsets_Right_Relative_cu:

MessageBox_cu(Type a horizontal right offset for selected objects, in spaces, in the next box)
GetUserInput_cu(strXOffsetRight)
SetXOffsets_Right_Relative_cu(strXOffsetRight)

And you would see the message box,

Then the dialog that accepts the text,

And now the variable strXOffsetRight can be used as a command parameter for the rest of the Sibelius
session. In this case it will be used to shift selected objects right, and you might see the selected notes shifted 3
spaces to the right in this example:

You would thus not need to write separate macros for each offset value you want to use, at the cost of having to
enter a value for the offsets. If you wanted the same offset all the time for some situation, you could have
separate macros/plugins for that situation.

5

You could write a separate macro for Left offsets, and for Y offsets as well.

The Offset commands expect a positive number. You can, though, put in a negative number, and it will make
the offset reverse direction. Left will go right, right will go left. Up/down also respond to a minus sign. You thus
need fewer commands if you choose to use negative numbers.

Entering a color name for ApplyNamedColor_cu would be another good use for this.

A variation on Parameter Variables - TextStyleDefaultForCommands _cu(styleTextOrId)

The command Add_Text_cu(strText) had a problem. It needed to specify both its text style name and the
text itself, but cmdutils limits the parameters to a single string of text. I created the command

TextStyleDefaultForCommands_cu(styleTextOrId)

to work around that. TextStyleDefaultForCommands_cu takes its parameter, which is a text style name
or id, and saves it into a global variable that can be accessed by Add_Text_cu and AddSelect_Test_cu.
Like the parameter variables, the global variable will hold its value until Sibelius is closed, but I recommend
calling TextStyleDefaultForCommands_cu immediately before running any command that needs that
variable.

Parameter variables are a generalization of the way TextStyleDefaultForCommands _cu works.

