
On Hiding Dialogs in Sibelius Plugins
Bob Zawalich August 1, 2021

Many plugins present complicated a dialog with lots of options, and we might want to be able to run

the plugin without having to deal with the dialog, especially when running it multiple times. Unlike

Sibelius commands, which can store settings in Engraving Rules, a plugin needs to carry its settings

around with it.

Here are some ways to avoid having to deal with dialogs every time you run a plugin.

Hiding a dialog

Most plugins with dialogs do not allow you to hide the dialog. Most that do allow it will have

the dialog appear if there is no selection and will also reset the Do not show dialog setting off the

first time the plugin is run in a Sibelius session. Here is an example of such a dialog.

You might still hide a dialog sometime in a Sibelius session and forget how to bring it back, but there

is a good chance that you might have seen the warning “for this Sibelius session”, and even if you miss

it or forget it you will be able to get the dialog back in the next Sibelius session.

Note Spacing and X Y Offset, though, have an extra option to always hide the selection. Here is the

dialog for X Y Offset.

I was reluctant to add this option, fearing that people would hide the dialog and not know how to get

it back. In both these cases, the dialog will appear if you run the plugin when there is no

selection. The plugin will warn you about this when you are choosing the option, but it is really easy

to miss or forget the warning. And once the plugin is hidden, there is nothing to read.

There is not much room for a loud warning in the dialog itself, but I note that in the Help text for X Y

Offset there is this warning:

“Hiding the dialog:

The list box lets you always Show the dialog or Hide it for the rest of the Sibelius session, and there is a new option to Always Hide

the dialog unless you run the plugin with no selection.

This can be convenient if you use the plugin a lot, and it can be mystifying if you set it and then don't use it for a long time, and

cannot remember how to get the dialog back.

The dialog will always appear if there is no selection, and you can change the dialog settings then. The settings are saved

across Sibelius sessions even if you cancel the dialog. Do not complain to me if you choose this option and cannot remember

how to get the option back. This is a power user option.”

Still, I prefer to not have users be stuck when they can’t figure out how to get the dialog back, and do

not plan to use this mechanism again. It is too easy to forget how to get the dialog back, especially if

you hid it a while ago and need to use it again.

The settings for Do Not Show Dialog for these plugins need to be stored in the Plugin

Preferences, and so uninstalling and reinstalling the plugin will not help. Technically, you could edit

the settings in the plugin Preferences, but that is really beyond even most power users to know to

do that.

Ensure that the dialog settings are what you want

One thing I want to emphasize before continuing is that if you hide a plugin’s dialog you need to

know what the settings will be when the plugin is run without a dialog. The effect of hiding

the dialog is the equivalent of bringing up the dialog and immediately choosing OK.

Pay attention when you choose a hiding option and check before you do a lot of work with a plugin

that might do things you are not expecting.

Issues with hiding dialogs

It can be useful to be able to run a plugin without a dialog, especially when plugins run other plugins,

as in Command Macros and Command Plugins in Sibelius 2021.2 and later, so I looked for a different

way to do this.

The “Hide always” model of Note Spacing and X Y Offset is both easy for the user to forget and

tricky to implement in a plugin. The Hide dialog code is often tied up with checking for an empty

selection, and possibly offering to select the entire score or exit, and it can be remarkably difficult to

retrofit a plugin to support the new option.

Also, when you bring up a dialog when there is no selection, you typically just want the dialog to come

up so you can check or change the options, and you typically do not want to continue after the dialog

goes down, since nothing has been selected. That often requires extra code to handle an graceful exit if

the user wants to continue after the dialog goes down.

The Run Plugin Hide Dialog model

Hiding dialogs, especially with the standard model of always showing the dialog at least the first time

in a session, gives the flexibility of being able to see the settings, and change them as needed.

There are situations, though, where you really never want to see the dialog, as when calling it from a

macro. The Run Plugin Hide Dialog model, when called plugins are set up to be called from

another plugin without showing their dialog but not changing any internal settings in the called

plugin, works pretty well in that situation.

The problem with it is that the user can run that plugin and show the dialog, and change the settings

to something that the macro does not expect; then when the macro runs and the dialog is hidden,

there can be unexpected results. If you forget that your macro calls a plugin with the dialog hidden, or

you give the macro or plugin to another user who has never known that it will call that plugin, then

the settings in the dialog when the plugin is called and unknown, and can have a significant effect on

the results.

This will probably not happen all that often, but when it does happen it will be both unexpected and

mysterious, neither of which is good.

Sometimes you need to control all the dialog settings when you call another plugin.

https://bobzawalich.com/wp-content/uploads/2021/06/Tutorial-Execute-Commands-Run-Plugin-Hide-Dialog.pdf

Clone plugins

One approach I have used for plugins, especially those that save their preferences across Sibelius

sessions, is to make clones of the plugins to be called (using the plugin Copy Plugin). Once the

clones are created, they can be run with the dialog showing, and the dialog settings can be established.

The original plugin could be used as it had always been used, and Run Plugin Hide Dialog or the

cmdutils equivalent could always be run on the clone.

The Focus On Staves plugin suite makes use of both cloned plugins and parent/child plugins.

In addition to the work setting up the clones, you would also need to be sure to make new clones any

time you update the original plugin, so it can be a bit tricky in the long term, but very effective in the

short term.

The advantage of the clone model is that it can be done pretty easily by users, especially if they use

Copy Plugins to produce the clones. A use can produce copies of existing plugins, with different

names, without having to change any code manually.

If the plugin does not save its settings in the Preferences data base, a most clones can be set to use

different dialog settings by running the clone once, changing the dialog to use your desired settings,

and choosing OK to be sure the dialog settings will be set. (You can try running it again, check that the

dialog is set up as desired, and then cancel). Now go to File>Plug-ins>Edit Plug-ins, and use Find to

find your clone plugin. Click on Edit, and then without changing anything, click on OK. The

dialog settings will now be stored in the plugin file itself, and should be the defaults from now on.

This will not work for some plugins that hard-wire dialog settings, but most of the plugins I have

written will allow you to change the setting this way. This process is discussed in more detail in this

Scoring Notes post.

Parent/Child plugins

The Parent/Child plugin model is based on the work I have done in cmdutls.plg, which itself is

based on some plugins like Save and Restore Selection, which is published with a Parent plugin,

Save Or Restore Selection, and 2 Child plugins, Save Selection and Restore Selection.

https://www.scoringnotes.com/tutorials/changing-default-dialog-settings-in-sibelius-plug-ins/
https://www.scoringnotes.com/tutorials/changing-default-dialog-settings-in-sibelius-plug-ins/

The children pretty much do what the Save Selection and Restore Selection buttons do. In this

case they need to be aware of whether there is a selection to save, or there is one to restore (in the

screenshot, there is no saved selection and the Restore button is disabled, so Restore Selection

has to deal with that scenario since it will not be able to restore anything. In such a case, it would just

put up a message box describing the situation, and then the plugin exits.

There are a lot of details, so please see the document Parent-Child plugins for the details,

including using such plugins with the cmdutils command RunPluginEntry_cu.

