
Parent/Child plugins
Bob Zawalich July 20, 2020

Many plugins present complicated dialogs with lots of options, and we might want to be able to run

the plugin without having to deal with the dialog, especially when running it multiple times. Unlike

Sibelius commands, which can store settings in Engraving Rules, a plugin needs to carry all its

settings around with it.

Some ways of doing this (Cloning plugins, using Do Not Show Dialog, and using the Run Plugin Hide

Dialog model) are discussed in other documents, such as On Hiding Dialogs in Sibelius Plugins.

Here I want to discuss an approach of designing plugins so they can be easily called without bringing

up their dialogs, a model I call Parent/Child plugins.

Parent/Child plugins

The Parent/Child plugin model creates a main, full-featured Parent plugin, and any number of

smaller-featured, dialog-free, Child plugins.

The model is based on the work I have done in cmdutls.plg, which itself is based on some plugins

like Save and Restore Selection, which is published with a Parent plugin, Save Or Restore

Selection, and 2 Child plugins, Save Selection and Restore Selection.

The children plugins pretty much do what the Save Selection and Restore Selection buttons do.

In this case they need to be aware of whether there is a selection to save, or there is one to restore (in

the screenshot, there is no saved selection and the Restore button is disabled, so Restore

Selection has to deal with that scenario since it will not be able to restore anything. In such a case, it

would just put up a message box describing the situation, and then the plugin exits.

The Double Note Values/ Halve Note Values plugins also use a parent child model, where

Halve Note Values just calls the main routine of Double Note Values, and many of the

Transformations plugins work the same way.

The Clipboards plugins family consists of the parent Clipboards.plg and a set of children:

ClipCopy1, 2, 3… ClipPaste1, 2, 3…

The big advantage of this model is that when updates need to be made nearly all of the work can be

done in the Parent plugin, whereas with clones, you would need to either recreate the clones from the

parent after changing the parent, or in the worst case, merge changes to the parent into all the clones.

More Parent/Child-style plugins

Cmdutils.plg is a collection of slightly less formal Parent/Child plugins, with the child _cu routines

almost always calling _Full routines, which are the Parent plugins. Even the full routines do not

typically have dialogs, but it is the same basic idea. For example this _Full routine.

Add_Line_Full (score, selection, styleTextOrId, fSelectNewObject)
• Adds a line of the requested style. styleTexOrId must be a StyleAsText or StyleId valid in the score, spelled EXACTLY as
ManuScript expects it to be.

is called by all of these Add Lines routines plus their corresponding AddSelect_Line routines:

Add_Line_cu(styleTextOrId)
• Adds a line of the requested style. styleTexOrId must be a StyleAsText or StyleId valid in the score, spelled EXACTLY as
ManuScript expects it to be.
Add_Line_8va_cu()
Add_Line_Box_cu()
Add_Line_Bracket_Vertical_Left_cu()
Add_Line_Bracket_Vertical_Right_cu()
Add_Line_Ending_First_cu()
Add_Line_Ending_Second_cu()
Add_Line_Hairpin_Crescendo_cu()
Add_Line_Hairpin_Diminuendo_cu()
Add_Line_Plain_cu()
Add_Line_Slur_cu()
Add_Line_Trill_cu()
Add_Line_Vertical_cu()
• Adds a line of the specified style to the selection
• Some of the lines, especial vertical lines like brackets and box lines are given slightly different (and better, in my opinion)
positions that Sibelius uses in the Lines menu.

Doing this lets me have nearly all the _cu routines require no parameters (the exception is

Add_Line_cu, with a single parameter for the styleNameOrId), so you can just use

Add_Line_Trill_cu to add a trill line, and it will pass the appropriate style id to Add_Line_Full,

where all the work is done.

Each of the children set up a small number of parameters, and call the parent. The big win here is that

the code in the children is minimal, and if I need to change code or fix bugs, all that code is likely to be

in the Parent routine, and I will usually not need to touch the children.

I have designed or modified a number of other plugins to be less formally Parent plugins. Cmdutils

calls a number of these, including

Apply Named Color
Bracket Text
Add Intervals
Transpose By Interval

These have methods, typically names with an API_ suffix, that can be called by other plugins, who

pass in parameters. The API_ suffix is an indication that the routine will not use any global variables

that a caller would not have access to.

In the future I plan to use the more formal Parent/Child model I describe below for any plugin with a

reasonably complex dialog that could be usefully called with a simpler set of parameters, as the

cmdutils routines are set up. It think it would be easier use such plugins as Parent plugins in the

future if set up that way from the start.

It is relatively inexpensive to set up a plugin to be a Parent plugin.

This would provide easier ways to create child plugins that can use a subset of the features of the

parent plugin, without needing to bring up any dialogs.

Designing a plugin to be a Parent/Child plugin

In my experience it is better to design plugins to work as Parent/Child plugins from the start, rather

than retrofitting them later. When the design is done, you know in advance that you need to limit

where global variables are used, and to call the parent with a subset of features is usually quite

straightforward.

In the general Parent/Child model, the parent plugin is stand-alone. It has a dialog and a reasonable

amount of options, including the ability to run without a dialog. It will often save preferences across

Sibelius sessions.

A plugin dialog stores its settings in some global variables, one variable for each control. Potentially,

these could be True-False Booleans for checkboxes and radio controls, or text strings for edit boxes

and single-selection listboxes, and arrays of strings for multi-select listboxes.

However, there is a command available to Execute Commands, called RunPluginEntry_cu

which is effectively a universal child plugin, and it is much easier to use it if the parameters in the

Dictionary are all text strings.

So I recommend that parent plugin dialogs be set up using edit boxes or list boxes as much as

possible. Use a list box instead of radio buttons, and if you really need check boxes, I suggest storing

values like “yes” for True and “no” for False for these controls, as the text versions of “True” and

“False” can be problematic.

My current Parent/Child design

I have published the template Parent/Child plugins MinimumPluginParent and

MinimumPluginChild.

In a Parent/Child plugin, all the settings used by the dialog will be stored into a single structure (in

my current design this is a Dictionary) right after the dialog would have come down had it been

shown.

The advantage of using a dictionary, as opposed to using an array or Sparse Array, is that you can give

each dictionary entry a name that reflects the contents, and thus do not have to copy the variables into

named local variables, or use index references when you need to use the data to figure out what a

specific parameter is to be used for.

Here is the code from GetDictDialogProperties() in my plugin Minimum Plugin Parent. This

routine sets the dialog property values (which have dlg_ prefixes) into the dictionary.

I like to use prefixes for variable names that indicate the nature of the data, so I am using str_

prefixes for the fields. This way I know to expect them to be text strings and not Booleans or arrays.

There is no requirement to do this, and if you do, you really need to use the convention consistently,

but I find this extremely useful when debugging or modifying code.

dict = CreateDictionary();
// Avoid using booleans in the dictionary. Here I map True to yes and False to no
if (dlg_fCheck1)
{
 dict["str_Check1"] = "yes";
}
else
{
 dict["str_Check1"] = "no";
}

if (dlg_fCheck2)
{
 dict["str_Check2"] = "yes";
}
else
{
 dict["str_Check2"] = "no";
}

dict["str_RadioOption"] = ("" & dlg_strRadioOption);
dict["str_Edit"] = ("" & dlg_strEdit);
dict["str_SeasonSelected"] = (dlg_strSeasonSelected);

In my template plugins, the externally callable plugins are called with a single parameter, which is a

Dictionary data structure. The values in the Dictionary are nearly always text strings, except for 2

variables which as always passed in, which are a score and a selection object, usually the

current active score and selection. These must use keys “score” and “selection” respectively.

In the main processing routine (API_ProcessSelection) the parameter dictSettings includes the

data from the dialog as shown above, but it must also include “score” and “selection”.

The important things about the main processing routine (API_ProcessSelection) is that

it cannot use any global variables except those that it creates itself. Any data it needs must

be passed into it as a parameter.

API_ProcessSelection needs to be callable from another plugin without messing up the internal

state of the parent plugin. All data the routine needs must be passed into it or created by it. Any

variables passed in dialogSettings need to be copies of the dialog data, not links to it, so that

changing the data will not affect globals in the parent plugin.

As long as this separation is maintained, then child plugins can call in with their own copy of a

dialogSettings structure.

In my template files for child-parent plugins (MinimumPluginParent and

MinimumPluginChild), the child can call the parent plugin routine

API_GetDictCurrentDialogProperties to get a dictionary containing all the dialog variables, but

this is not required. The child can create its own dictionary, fill it, and then call

API_ProcessSelection.

A warning about passing Booleans in dictionaries.

Booleans (True/False) are different from the text “True” or “False”. val = “True”; is fundamentally

different from val = True;, and they test differently. I suggest using Boolean values rather than text

string for the values of Booleans if possible. If you must use a string, I strongly recommend passing

in “1” and “0” instead of “True” and “False”, because if (str_1) will resolve to True, but the text

equivalent “True” will not.

It is perfectly possible to pass Booleans in a Dictionary. However, since the cmdutils command

RunPluginEntry_cu has to parse a text string containing variable values it will store into a

Dictionary, it could fill the dictionary with “True” or “False”. I actually have RunPluginEntry_cu

convert such text to Booleans, but not all Children will be so careful, so I recommend avoiding using

Booleans as values in the Dictionary.

I have decided that, for any Parent plugins I create, I will use a list box instead of radio buttons when

possible, to both reduce the number of variables I need to deal with, and to reduce the number of

Boolean variables passed around. If I really need to use checkboxes I am using the text values “yes”

and “no” to avoid having problems with code like if (str) failing when str could be the text string

“True”. Instead I am forcing the code to explicitly say if (str = “yes”).

Passing the dialog settings to the Child

A child plugin can get a dictionary containing the CURRENT dialog settings, using the same code the

Parent uses for itself. The advantage of this is that the child gets a structure set up with field names

(which they can easily trace) and it could save time in setup.

When the child fills out the structure, I recommend setting every field explicitly so the results

do not depend on the last change the user made in the dialog, unless that is something you want to

capture.

The parent plugin method API_ routine, API_GetDictCurrentDialogProperties(pDictIn) can

be called by the child plugin. Like API_ProcessSelection, it is passed in a dictionary containing the

score and selection, plus (in my templates) a variable called “str_Trace”, which should be a string

with a value of “yes” or “no” If (str_Trace = “yes”), the names of the dictionary fields and their current

values will be written to the trace window, which is useful when you are setting up the child call.

Passing the dialog settings to the Parent

The child must either use the dictionary from API_GetDictCurrentDialogProperties, or create

its own, and fill in the required dialog property entries, plus the “score” and “selection” entries. It will

then call API_ProcessSelection or an equivalent routines, passing the filled-in Dictionary as its

own parameter.

You can install the template plugins Minimum Plugin Parent and Minimum Plugin Child, and

make copies of them and change the parent dialog and other code.

You can use the cmdutils command RunPluginEntry_cu to create Child plugins for any Parent,

with no coding required. This is discussed in great detail in the document RunPluginEntry_cu

and Parent-Child Plugins.

Otherwise, this pretty much covers the concept of Parent/Child plugins.

