
1 | P a g e

RunPluginEntry_cu and Parent-Child Plugins
Bob Zawalich July 31, 2021

You can read about the design of Parent/Child plugins in the document Parent-Child Plugins.

In a nutshell, a Parent plugin is one set up so that its dialog settings are collected into a data

structure (a Dictionary), and then its main processing routine is called using only the settings in the

Dictionary. A Child plugin can then create a Dictionary, fill it with appropriate vales, and then call

the Parent’s main processing routine, knowing that all the data required is contained in the

Dictionary, and no dialog is needed.

This document describes the use of the cmdutils command RunPluginEntry_cu as a universal

child plugin for appropriately designed Parent plugins.

Using the RunPluginEntry_cu command in Execute Commands/cmdutils.

A Parent plugin is an excellent target for commands in cmdutils.plg. The plugin can contain many

options in the main dialog, but cmdutils can call a single feature without showing the dialog.

Here is the dialog for Filter Notes By Durations, which is set up to be called this way.

The dictionary passed to the routine API_ProcessSelection has text strings for the 4 list boxes,

plus entries for score and selection. In the trace below, the score and selection field values do not

appear in the trace, but the normal text fields do.

TraceDictDialogProperties: tracing property dictionary.
index: 0, name: score, value:
index: 1, name: selection, value:
index: 2, name: str_Duration, value: q

2 | P a g e

index: 3, name: str_Operator, value: =
index: 4, name: str_Type, value: Notes, chords, and rests
index: 5, name: str_Action, value: select
There are 6 entries in the dictionary.

After I wrote Filter Notes By Durations, I added some commands to cmdutils to call some of its

features. There are a lot of combinations, so I decided to leave the duration as a parameter to the

commands (which to date had only allowed a single parameter), and effectively absorbed the other

options into the command names.

Filter_Duration_Notes_Equal_cu(e)
Filter_Duration_Notes_Greater_cu(q)
Filter_Duration_Notes_GreaterEqual_cu(x)
Filter_Duration_Notes_Less_cu(h.)
Filter_Duration_Notes_LessEqual_cu(w..)

These commands only allowed the user to filter notes and chords, but not rests, and had one

command for each of the 5 “comparison operands”. I could have added 2 more sets to handle the

other “objects to filter”, but I was aware of up the cost of needing to have a huge number of commands

in cmdutils to process a plugin with a lot of options.

I was also aware that users might want to write their own Parent plugins, which could be used as

commands in Execute Commands, but if they wanted to have children plugins, they would need to

create a separate plugin for each of the options. In the model above there would be 720 children

plugins plus the parent that would need to be created to cover all the options, because Plugin

Commands do not take parameters; only cmdutils commands do, and a user cannot create new

cmdutils commands.

So I came up with RunPluginEntry_cu.

RunPluginEntry_cu lets you call a plugin at a specified entry point, and give it a set of parameters.

It is designed around calling Parent plugins that have routines that are passed parameters in a

dictionary. It is currently the only cmdutils command that has more than one parameter.

RunPluginEntry_cu is effectively a universal Child Plugin for any plugin method that

accepts its parameters through a Dictionary of named fields.

The format for this command is:

RunPluginEntry (<plugin command id>, <Entry point name>, strName1, strVal1, strName2, strVal2, … strNamen, strValn)

Fields are separated by a comma, followed by zero or more spaces.

IMPORTANT NOTE!!! strVal and strName elements may NOT contain commas (or single or

double quotation marks)!!!!! This is a simple parser and commas always separate fields.

• The first parameter is the plugin command id (essentially the file name with no path, and a

“.plg” extension.

• The second parameter is the plugin entry point name, spelled exactly as in the plugin.

• The remaining parameters are pairs of (name, value) strings that will be used as entries into the

Dictionary that will be passed as a parameter to the plugin entry point, which must be set up to

accept its parameters in a Dictionary.

These parameters must be text only, and any Parent routine called by RunPluginEntry _cu needs

a score and a selection, so RunPluginEntry _cu adds the score and selection entries for the

3 | P a g e

current active score to the Dictionary before calling the plugin entry point. The score and selection

are Bar Objects, not text, and so they cannot be specified in the RunPluginEntry _cu parameter.

Here is RunPluginEntry_cu command line whose parameters produce the same result as the

FilterNotesByDuration dialog shown above:

RunPluginEntry_cu(FilterNotesByDuration.plg, API_ProcessSelection,str_Duration, q, str_Operator, =, str_Type, Notes,
chords, and rests, str_Action, select)

It is similar to the command built-into cmdutils.plg:

Filter_Duration_Notes_Equal_cu(q),

except that the built-in function will not include rests in its filter.

This is only 1 of the 720 (3 note/rest choices, 5 comparators, 24 durations, 2 actions) combinations

available in FilterNotesByDuration. Instead of having to add 15 new commands to cmdutils, I can

use RunPluginEntry_cu with different parameters, and any user can do the same thing if they

know which parameters to use.

This is more “programmery” that most of the cmdutils commands, but it provides a great amount of

flexibility and easy future expansion.

A user can now call into any appropriately designed Parent plugin (assuming they know the

appropriate parameters), without needing to have anything added to the cmdutils library. They can

call a plugin they wrote or a published plugin.

For example, the “built-in” commands that call FilterNotesByDuration,

Filter_Duration_Notes_Equal_cu(e)
Filter_Duration_Notes_Greater_cu(q)
Filter_Duration_Notes_GreaterEqual_cu(x)
Filter_Duration_Notes_Less_cu(h.)
Filter_Duration_Notes_LessEqual_cu(w..)

will only filter notes and chords. If you wanted to have a filter for rests whose duration were greater

than or equal to a half note, you could create this command

RunPluginEntry_cu(FilterNotesByDuration.plg, API_ProcessSelection,str_Duration, h, str_Operator, >=, str_Type, Rests
only, str_Action, select)

and use it in a macro. To create this command I copied the text from the command above, changing

the duration to “h” for half note, the operator from “=” to “>=”, and the type to “Rests only”.

Since I would like to have Parent plugins that can be called from Execute Commands using

RunPluginEntry_cu, without needing to update cmdutils.plg, the Parent plugins I will publish

will use this parameter model.

4 | P a g e

Parameters available in FilterNotesByDuration that can be used by RunPluginEntry_cu

Here is one set of dialog settings for FilterNotesByDuration

RunPluginEntry_cu(FilterNotesByDuration.plg, API_ProcessSelection,str_Duration, h, str_Operator, >=, str_Type, Rests
only, str_Action, select)

Here are lists of the possible legal values for each parameter passed by RunPluginEntry_cu to

Filter Notes By Duration

• str_Duration

• "w"

• "w."

• "w.."

• "w..."

• "h"

• "h."

• "h.."

• "h..."

• "q"

• "q."

• "q.."

• "q..."

• "e"

• "e."

• "e.."

• "e..."

• "x"

• "x."

• "x.."

• "x..."

• "y"

• "y."

• "y.."

• "y..."

• str_Operator – any values in this list

• "="

• "<"

• ">"

• "<="

• ">="

• str_Type– any values in this list

• "Notes, chords, and rests"

• "Notes and chords only"

• "Rests only"

5 | P a g e

• str_Action

• select

• deselect

Generating RunPluginEntry_cu command strings

You can call any plugin that has an entry point that can be called by a Dictionary of commands, such

as a plugin that follows my Parent plugin model. At the time of writing I have 3 published plugins that

can be called this way: Filter Notes By Duration, Filter Notes By Positions, and Filter Notes

By Beat. You can call the entry point API_ProcessSelection in any of these plugins with an

appropriate set of dialog properties.

One of the purposes of having RunPluginEntry_cu, though, is to empower a user to write a plugin

using that model, and then call into the Parent plugin with a Command Macro or Command Plugin in

Execute Commands. No changes will need to be made to cmdutils or Execute Commands or

Run Command Macros to handle these new commands. To all those plugins, it is just another

command.

You need to do 2 things to call an appropriate plugin entry point with RunPluginEntry_cu

1. Create the command string with all the parameters

2. Add the command string to a macro or plugin.

Creating a RunPluginEntry_cu command string

A string like

RunPluginEntry_cu(FilterNotesByDuration.plg, API_ProcessSelection,str_Duration, h, str_Operator, >=, str_Type, Rests
only, str_Action, select)

is tedious but not impossible to write. You can open a text editor and type the command and all its

parameters, which should be relatively straightforward if you know the commands that your Parent

plugin uses.

For some Parent plugins there is a spectacularly easy way to generate the command strings. The 3

Filter Notes… plugins described above have a button called Trace for RunPluginEntry. If you

choose that button, a command line will be written to the Plugin Trace Window, with all the

parameters that are appropriate for the current dialog settings in place. This string will be written to

the trace window:

for this dialog, with these settings:

6 | P a g e

You can now select and copy (using ctrl/cmd+c) that text in the Trace Window, and paste it into a text

editor, and add it to a .dat file or otherwise make it available to Execute Commands.

You can trace a bunch of different settings and get a different command line for each combination.

Adding a RunPluginEntry_cu command string to a macro or plugin

In my opinion, the most efficient way to get a copied command string into a macro or Command

Plugin is to edit or create a macro file (which is really just a text file with a .dat extension) in the

Execute_Commands subfolder of your default Scores folder. This macro file can be read into

Execute Commands using the Import List button. Export List saves files to that folder, so if the

folder does not exist you can use Export List to create a file, and create the subfolder at the same

time.

You can open an existing dat file and add the command line to that file, or create a new one, and after

pasting the command line and saving the dat file, you can immediately bring it into Execute

Commands with the Import List button.

You could also use the Add new command… button in Execute Commands after copying the

traced RunPluginEntry_cu command line. That will bring up an dialog with an edit box. Paste the

command line into the edit box using ctrl/cmd+v.

7 | P a g e

At this point, it is like any other command. You can add more commands to the list, or use Export

List to save it as a macro (dat) file, or use New Plugin to generate a plugin from the command.

A couple things to mention:

• Only a very few plugins support the Trace option, though I plan to add it to other plugins that

can be used in this manner.

• The saved command string will be available for the remainder of the current Sibelius session

unless overwritten by another command.

• There is only 1 saved command that can be retrieved by Get RunPluginEntry text in

Execute Commands. If you brought up Filter Notes By Beat, and traced statements for 5

different combinations of settings, they would all appear in the plugin trace window, but only

the last one you traced would be accessible to Get RunPluginEntry text.

• If that is your situation, just copy all the command lines into a text editor, and save a dat file

which you can then import into Execute Commands.

There you go. Pretty cool, I think.

