

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 1

Plugins Designed to be Run by Other Plugins
The RunPluginEntry Edition

Bob Zawalich October 14, 2022

TLDR Summary

If you run a plugin that has a New Macro/Plugin button, pressing it will generate a “command line” that will
allow you to later run that plugin with the current dialog setting but without showing the dialog.

The command line needs to be turned into a macro or plugin using the plugin Execute Commands. See an
example here.

Overview

Sibelius plugins have traditionally been designed to be run by humans. You or I can choose options from plugin
dialogs and make other decisions.

In some cases, such as batch plugins, one would prefer not to have to check and OK a dialog for every file
processed. Some plugins were given a “Do not show dialog” checkbox that would show the dialog the first
time the plugin was run in a Sibelius session, and then you could turn the dialog off. Every time the plugin was
run again in the same session it would run without bringing up the dialog, using the settings you had chosen
when it was first run.

When it became possible for plugins to run Sibelius commands (in Sibelius Ultimate 2021.9), the plugin
Execute Commands made it possible to set up a macro that would run a number of commands, including
plugins, in sequence. In this context it is desirable to be able to run a plugin with a specific set of plugin settings
every time, without ever needing any user interaction.

Imagine a case where you create a macro that runs plugins and then you give it to someone else to use. If they
had to enter the correct settings in the dialogs of each plugin in the macro, it would be both error prone and
difficult for you to explain.

I tried various way to make this work better. One way to do this was to set up a full-featured plugin with a
dialog, which I referred to as a Parent plugin, and then write a number of small Child plugins that do nothing
except call the Parent with a specific set of dialog settings.

An example of this is the Clipboards plugin, whose dialog is shown below.

To run it using the dialog you need to choose one of 30 clipboards and say whether you want to copy or paste. It
became clear that one would be likely to want to set up a number of clipboards and then copy to them and use
that data to paste into scores. I wrote a number of Child plugins which could each run one combination of
clipboard number and either Copy or Paste, bypassing the dialog. I provided Copy and Paste children for the
first 5 clipboards, which were installed along with the parent plugin.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 2

This works ok, but you can only use the provided children for a small set of clipboards. I gave instructions for
making clones of the children and changing the clipboard number. It was not really satisfactory, but it would
not be practical to ship 60 child plugins to cover all the combinations. And many plugins have many more
combinations of dialog options than 60.

Later I created a large library plugin, cmdutils, containing extended commands, which could be called from
Execute Commands or other plugins. Most of the code for the commands was completely contained within
cmdutils, but a few times I found existing plugins that could do what I wanted, and so I adapted those plugins
so that cmdutils could call them without a dialog.

For example, I wanted to make a set of commands to add a larger set of intervals than Sibelius provides, and I
realized I had all the code I needed in the existing plugin Add Interval. I restructured that plugin so it could
either be run by a human with its dialog, or it could be called by other plugins who passed in the same kind of
data that was provided by the dialog.

I ended up giving cmdutils a set of AddInterval commands, each of which could duplicate any combination
of dialog settings in Add Intervals. Most of the options were specified by the command names, but the
commands also took a parameter, the Interval number, so each name could have 15 variations.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 3

Since the AddInterval commands were all contained within cmdutils, I did not need to provide 18 separate
child plugins, but I did need to add all those commands to cmdutils, which was still a fair bit of work.

Eventually, I realized that if I expanded the parameter list of a command to include all the settings it would be
possible to create a single command in cmdutils that could call any specially-designed plugin. The command
could pass in settings that matched every control in the dialog of the called Parent plugin. I wrote the
universal child plugin called RunPluginEntry_cu.

This command has a list of parameters that specify which Parent plugin is to be called, which routine within the
plugin is to be called, and which combination of dialog settings should be used.

Let’s look at an example. The most recent version of the plugin Filter Other was adapted to support
RunPluginEntry_cu. It has a dialog like this:

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 4

In a macro, we want to be able to run a plugin with the same dialog settings every time, without ever seeing the
dialog. For Filter Other, we would want to capture the settings of the controls marked in red.

Plugins that support RunPluginEntry_cu are required to generate appropriate parameters for the
command, and all the one I have written so far have a New Macro/Plugin button to generate and trace a
command line that enables RunPluginEntry_cu tp run a parent plugin like Filter Other with the specified
dialog options.

If you press the New macro/plugin button, the plugin will write a line of text to the Plugin Trace Window.
With the options chosen above for Filter Other, the command line looks like this.

RunPluginEntry_cu(FilterOther.plg, API_ProcessObjects, str_Action, select, str_FilterType, Notes By Number of Notes,
str_StyleName, 2, str_fShowResults, yes, str_fTraceLocation, yes)

This looks pretty intimidating, but you really don’t need to do anything with it except to copy the generated text
and get in into the Execute Commands plugin.

Without getting into too much detail, the command line tells RunPluginEntry_cu the file name of the
plugin to run (FilterOther.plg, the routine, or entry point, within the plugin to run
(API_ProcessObjects), and the values of each of the controls we care about. The command line has 2
entries for each control in the dialog, representing the name of the control, and the value of the control.

In this example, the list box control is called str_FilterType and its current value is Notes By Number of
Notes, so the command line has 2 entries for that control. Filter Other, the “parent plugin”, determines
which controls to put in the command line, and what their names should be, and this is true for all such Parent
plugins, so you do not have to figure that out.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 5

The details of the command line don’t matter to you. What you need to do is to set up the options that you want
in the dialog, and then press the New macro/plugin.

What do you do with the command line?

RunPluginEntry_cu command lines were designed to be used in the plugin Execute Commands. The
command line could be added into the Execute Commands command list by copying the text in the trace
window, running Execute Commands, pressing the button Add New Command, pasting the command
line into its dialog, and then pressing OK. At this point the command line can be used like any other command.
It can be saved as a macro or plugin or incorporated into a set of commands to make up a larger macro or
plugin.

This seems like a lot of work, but if you are building a macro that you will use over and over, it will take you less
than a minute to create the command line and incorporate it into Execute Commands, and then it will be
something you can use forever.

Here is what Execute Commands would look like after adding this command line. You can quickly test what
it does by pressing the Execute Command List button. If it does what you want, use Export List to save the
command as a macro, or New Plugin to generate a plugin that will run this command.

The command line is typically too long to be fully shown in the listbox. Hover your mouse near the line and you
should see the full line, or you can press Edit Command to see the line in a longer edit box. But in general,
you really don’t care what it says.

How is this useful?

If you are not writing macros or plugins you will not care about this. You probably stopped reading this a long
time ago, but if not, feel free to stop now.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 6

If you are writing macros or plugins and you want to run another plugin without seeing the dialog, you can use
this mechanism to specify any combination of dialog controls you want. Filter Other has about 40 entries in
the list box, and many of those entries have a list of values in the smaller Style List.

RunPluginEntry_cu can run *any* plugin that is structured according to its specifications, so new Parent
plugins can be written at any time, and you can use RunPluginEntry_cu command lines to specify exactly
which plugin to run, and which dialog settings you want from any supported plugin.

Technical specifications for parent plugins

ManuScript developers can find documentation on how to structure a Parent plugin here. There are also a
number of documents on the Execute Command plugin family here. The document The cmdutils library in
Execute Commands should be especially useful.

The plugin Minimum Plugin Parent RPE_Enabled is a freely modifiable template plugin you can installs
and copy for a template.

Simplifying the use of a command line

While it was definitely possible to paste a command line into Execute Commands and from there to use that
command to create a macro or plugin, I wanted to find a way to make it simpler to create a plugin that would
run just the generated command, and an easier way to get the command line into the command list in Execute
Commands.

I added code to the plugin Custom Search Shortcut that other plugins could use. If Custom Search
Shortcut is installed, any plugin that has a New Macro/Plugin button will be able to generate a plugin that
runs this command line directly, or to insert the command line directly into Execute Commands, so that it
will be in the command list the next time Execute Commands is run.

Currently the plugins Filter Other, Move Transposed Notes To Mid Line, Flip Selected Notes, and
Add Instrument Change With Names support this facility, and several plugins that have a Trace Macro
button will be updated in the near future.

https://bobzawalich.com/parent-child-plugins/
https://bobzawalich.com/execute-commands-plugin-documentation/
https://bobzawalich.com/wp-content/uploads/2021/06/The-cmdutils-library-in-Execute-Commands.pdf
https://bobzawalich.com/wp-content/uploads/2021/06/The-cmdutils-library-in-Execute-Commands.pdf

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 7

An Example

Here is the Filter Other plugin that traces the command line when the plugin Custom Search Shortcut is
installed:

RunPluginEntry_cu(FilterOther.plg, API_ProcessObjects, str_Action, select, str_FilterType, Notes By Number of Notes,
str_StyleName, 2, str_fShowResults, yes, str_fTraceLocation, yes)

to the Plugin Trace Window:

When you have chosen the dialog options you want and press the New macro/plugin button in Filter
Other, you will see a dialog like this, which needs to determine if you wanted to Select or Deselect the
filtered material, since you would not have pressed one of those buttons yet.

Once you choose, the command line is immediately traced to the Plugin Trace Window, and it can be manually
pasted into Execute Commands as described earlier.

If the plugin Custom Search Shortcut is installed, some more things will happen.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 8

You will see a dialog appear that will show you the current command line, and let you choose to generate a
plugin that will run this plugin, and/or to make the command line appear in the command list of Execute
Commands the next time that plugin is run.

If you choose to generate a plugin, a new plugin name and menu name are generated from the Parent plugin
name (Filter Other in this case) plus some text that represents the values passed to the command line. The
plugin will be installed into the same folder into which the parent plugin is installed. You will then see the New
Plugin dialog from Execute Commands, containing the names and subfolder/category.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 9

The names are unwieldy but descriptive and should be unique. If you will only use this plugin in other macros
or plugins you can leave the unwieldly names, otherwise you can change them to something more wieldy.
Hint: fill in Name (without spaces), and then press Fill menu name, which will copy the file name to the
menu name edit box, separating words with spaces. You can also change the category of the generated plugin.

After you create the plugin, you will need to close and restart Sibelius before you can access it.

If you chose Append the command line to the Command List in Execute Commands, then the next
time you run Execute Commands in the current Sibelius session, you will find the command line at the end
of the command list.

If the command list in Execute Commands had looked like this:

and then you use Append the command line to the Command List in Execute Commands, then run
Execute Commands again, you will see:

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PLUGINS DESIGNED TO BE RUN BY OTHER PLUGINS.DOCX PAGE 10

with the command line at the bottom of the command list, ready to be part of a macro or plugin.

Plugins to Install

In addition to any Parent plugin you want to run (as of this writing. Filter Other, Move Transposed Notes
To Mid Line, Flip Selected Notes, and Add Instrument Change With Names), you will also need:

• Execute Commands

• cmdutils

• Custom Search Shortcut

• Run Command Macro

These can all be installed using File>Plug-ins>Install Plug-ins. Use the Search box to find them in the list
of all plugins, or go to the category Developers’ Tools.

