
1 
 

The cmdutils library in Execute Commands 
Bob Zawalich  27 April, 2021,  Updated 28 February 2025 

Contents 
Overview .............................................................................................................................................................. 2 

Using cmdutils commands in Execute Commands ............................................................................................ 3 

Cmdutils Commands ........................................................................................................................................... 4 

Command Parameters ..................................................................................................................................... 4 

GetUserInput_cu and parameter variables ................................................................................................... 6 

“Full” methods in cmdutils.plg (not available in Execute Commands) .............................................................. 8 

Classes of Cmdutils Commands .........................................................................................................................10 

Add Object and “Add and Select” Commands ................................................................................................10 

Identifying objects to be added ......................................................................................................................10 

Add Object Commands ................................................................................................................................... 12 

“Add and Select” Commands .......................................................................................................................... 13 

Add lntervals Commands ............................................................................................................................... 14 

Transpose Intervals Commands ..................................................................................................................... 14 

Selection commands ....................................................................................................................................... 16 

Plugin Exit Commands ................................................................................................................................... 19 

Text formatting commands ............................................................................................................................ 21 

View Tab Commands ...................................................................................................................................... 21 

Horizontal (X) and Vertical (Y) Offset commands ........................................................................................ 22 

User Input Commands .................................................................................................................................. 23 

Mute/Unmute Commands ............................................................................................................................ 23 

“Other” Commands ....................................................................................................................................... 24 

Alphabetical full list of commands called from Execute Commands (as of February 28, 2025) ..................... 26 

Commands in category: Cmdutils Add Objects ............................................................................................. 26 

Commands in category: Cmdutils Add lntervals .......................................................................................... 27 

Commands in category: Cmdutils Selection .................................................................................................. 28 

Commands in category: Cmdutils Exit Plugin .............................................................................................. 29 

Commands in category: Cmdutils Text Format ............................................................................................ 30 

Commands in category: Cmdutils Transpose Intervals ............................................................................... 30 

Commands in category: Cmdutils View ........................................................................................................ 30 

Commands in category: Cmdutils X Y Offsets ............................................................................................... 31 

Commands in category: Cmdutils Other ........................................................................................................ 31 

Making plugins that use a single call to a cmdutils command ......................................................................... 33 

Debugging aids .................................................................................................................................................. 33 

Sharing Command Macro and Command Plugins Files ................................................................................... 33 

Tip: use Command Macro format (.dat files) for your “source code” ............................................................. 34 

A sample plugin that uses cmdutils calls: Add Line And Dynamic Text ................................................ 35 

 



2 
 

Overview 
 
cmdutils.plg is a library of ManuScript commands, written by Bob Zawalich, intended to be called by other 
plugins, particularly plugins that make use of the Command/Sibelius.Execute() facilities made available in 
Sibelius Ultimate 2021.2. You install it with Install Plug-ins, like any other plugin.  
 
You can call the routines in cmdutils.plg in any plugin in Sibelius6 or later. To use it with Execute 
Commands you need Sibelius Ultimate 2021.2 or later. 
 
The purpose of the library is to increase what is possible to do with sequences of commands.  
 
It provides some features that are not available as Sibelius Commands, in part because most of the new 
features take parameters and have return values, which Commands do not use. 
 
The return values will only be accessible in plugins that use the commands, not in Command macros, which are 
sequences of commands with no intervening ManuScript code. 
 
Most of these new commands can be accessed directly from the plugin Execute Commands, using the 
“Cmdutils” categories. These will only appear in the list of categories if cmdutils.plg is installed. 
 
You can trace and then copy and print the list of the commands for each category using the Trace button 
below the middle list box. 
 
For an overview on using the Execute Commands plugin, see the Scoring Notes post  
https://www.scoringnotes.com/tutorials/using-commands-in-plug-ins-in-sibelius-ultimate/ 
 

  

https://www.scoringnotes.com/tutorials/using-commands-in-plug-ins-in-sibelius-ultimate/


3 
 

Using cmdutils commands in Execute Commands 
 
Many of the _cu commands take no parameters and can be used like any other command. Choose a Cmdutils 
category and add the command you want to call, such as  
 
ExtendSelection_Left_cu() 
MuteSelectedNotes_cu() 
SetTextFormat_Bold_cu(). 
 

to the Command List.  
 
Some _cu commands, such as the Add and AddSelect commands, need to be told what to add, and so you 
must add some text between the parentheses (). The commands on the list that need such text will be given 
placeholder parameters that you will probably need to replace to accomplish what you want to do. For 
example, these commands have text that you might need to change after adding them to the Command List. 
 
ExitIfSelection_NotPassage_cu(A passage selection is required. This plugin will now exit.) 
AddSelect_Text_Technique_cu(legato) 
Add_Line_cu(line.staff.hairpin.crescendo) 
 

You can do simple editing of the placeholder parameters using the Edit Command… button. 
 
In most cases, the placeholder text will produce a reasonable value, even if it is not what you want. 
RunPluginHideDialog_cu(Valid Plugin Menu Name), however, might cause problems if it used a valid plugin name, 
because if you ran a plugin without showing its dialog, and the plugin changed your score, you would likely be 
unhappy. Thus, if you do not change the placeholder, you will be told that the command is invalid and you will 
have to change it. 
 
You cannot access the return values of the commands in Execute Commands, or use commands that need 
objects instead of strings for parameters. To access those facilities, you will need to create a plugin and edit 
these commands in the plugin. 
 
You can generate a New Plugin from a sequence of commands in Execute Commands, or otherwise create 
a plugin in the traditional manner, and then add calls to these commands from within the plugin code. If you 
then edit that plugin in File>Plug-ins>Edit Plug-ins or a text editor you will find the commands that had 
been in the Command List are in the command Process Score. 
 

The Execute Command command form does not use quotes or semicolons, but when code is written to a 
New Plugin it will be made into syntactically correct ManuScript code. 
 

You can also call other routines in cmdutils in a plugin with ManuScript code. They will not have a _cu suffix 
in their names, since that designation is reserved for commands that can be used in Execute Commands. 
The _Full variants of the cmdutils commands are not available in Execute Commands, but can be called 
directly in a plugin.  
 
Here is an example of a _cu command with edited text in the parameter: 
 
Add_Text_Technique_cu(Adding this text at start of the selection) 
 

and the ManuScript code used in a plugin to call this cmdutils command: 
 
txtNew = cmdutils.Add_Text_Technique_cu(“Adding this text at start of the selection”); 
 

This will add Technique text to the start of the selection, and return the created object. 
 

You should ensure the cmdutils.plg is installed on the machine of anyone using such a plugin, and typically 
ExecuteCommands.plg also needs to be installed. Any plugins generated by New Plugin in Execute 
Commands will add code to check for these plugins if any of the commands require them.  



4 
 

Cmdutils Commands 
 
The _cu commands in cmdutils process the first selected object in the current selection of the currently active 
score, mimicking what Sibelius does when adding object to a score. 
 
As in Sibelius itself, many of these routines treat staves hidden by Focus In Staves or Hide Empty 
Staves as if they are not hidden. In particulate the ExtendSelection Up/Down and Contract 
Selection Up/Down routines will just include or exclude the next staff they find, irrespective of the hidden 
state. Be careful when copying and pasting in selections that include hidden staves. 
 
If the current selection is not a passage selection, the location of the object will be that of the first object found 
in the selection. If the selection is not a passage, the order of these is determined by the order in which the 
objects were selected, which may not be in chronological score order. 
 
If you want to make sure the new objects will be added to the position of the chronologically first or last 
selected object, you can first call SelectPassageForCommands_cu, which will turn the multiple selection 
into a passage, or use one of the Select_First/Last_Object commands, which will sort the selected objects 
and select only the first or last of the originally selected objects. Now you can run an Add Object command 
knowing where it will actually go. 
 
The commands listed below have either a _cu suffix or a _Full suffix. The _cu commands call the _Full 
commands, with a hard-coded set of parameters, so the _cu routines are less fussy to deal with. If you need the 
full range of parameters, you can call the _Full routines directly from a ManuScript plugin. _Full routines are 
displayed in Italic in this document. 
  

Command Parameters 
 
One thing that distinguishes cmdutils Commands from Sibelius Commands is that cmdutils Commands can 
accept parameters. 
 
Most cmdutils commands have no parameters; you simply add the command to the Command List and run it. 
The names of such commands will end with “_cu()”, with nothing between the parentheses. 
 
Here are some commands that have no parameters: 
 
ExtendSelection_Left_cu() 
GoToFirstBar_cu() 
SetTextFormat_Bold_cu() 
MuteSelectedNotes_cu() 

 
Other commands will have a single text parameter between the parentheses, which allows the 
commands to works with a number of inputs. While the command Add_Line_Plain_cu() has no parameter, 
since the line style is implied by the command name, Add_Line_cu() needs a style name or id, such as 

Add_Line_cu(Glissando (wavy)) or Add_Line_cu(line.staff.arrow.black.right). This allows 
Add_Line_cu to create a large number of line styles, at the cost of needing to very precisely specify the style – 
misspelled style names will cause the command to fail. 
 
When a command needs a parameter, it will always appear in the command list with  a 
“placeholder” parameter.  
 
In some cases, that placeholder can be the one you need, as in AddInterval_Down_Minor_cu(3), where 
the “3” is a placeholder for the interval you want, if you do not want to add a minor 3rd, you can edit the 
command to change the parameter. For the AddInterval commands, you can change the placeholder to be a 
whole number from 1  (unison) to 8 (octave). 
 



5 
 

Changing the placeholder can be awkward, since Execute Commands is not set up to edit in place. The 
supported editing mechanism is to select the command in the Command List and press Edit Command. You 
will see a dialog like this: 
 

 
 
Edit the 3 to be the interval you want and press OK. For some commands, like AddInterval, there will be 
restrictions of the values of parameters, which will only be enforced when the command is run. If, for example, 
you asked for an interval of a minor 5th, you would see this message. 
 

 
 
If I am writing a macro that has a lot of parameters I will need to change, I enter the commands into the 
Command List, use Export List to create a text (.dat) file, then open that file in a text editor, make the edits all 
at once, then save the file in the text editor, and load it back into Execute Commands using Import List. 
 
Note that parameters can only be text characters or numbers. They cannot include single or 
double quote characters (due to internal ManuScript limitations), so sometimes you need to be clever to 
work around the text (use do not instead of don’t, for example, and rewrite to avoid possessives.) The 
parameter string in the command RunPluginEntry_cu  cannot include commas, except those that separate  
sub-parameters. With great power comes great responsibility! 
  



6 
 

GetUserInput_cu and parameter variables  
 
Parameters can only be changed if you edit the command itself. What if you want to be able to have the 
parameter change while a macro is running? Parameter variables provide a way to pass user input to a 
Cmdutils Command. 
 
GetUserInput_cu(variableName), will put up a dialog you can type into, and will store the result in a 
parameter variable whose name is the parameter of GetUserInput_cu. A parameter variable, for our 
purposes, is a name that can hold a value.  
 
For GetUserInput_cu, the name of the variable is its parameter and the value is the text that you type into 
the edit box . If I ran GetUserInput_cu(strVariableName), and typed in this text: 
 

 
 
there would now be a variable with the name strVariableName that holds the value “This is text that will be 
saved in strVariableName”.  
 
The parameter variable strVariableName will exist with its current value until the end of the Sibelius session 
in which it is created. If you try to use it in the next session without calling GetUserInput_cu first, 
strVariableName  will resolve to the text  strVariableName. So don’t do that! 
 
You can also change the heading used in the GetInput dialog by calling SetUserInput_Heading_cu(). 
The default heading, if this is not called, is “Type into the edit box, then type Enter for OK or Esc for Cancel.” 
Once you call SetUserInput_Heading_cu, the heading will be used by GetUserInput_cu for the 
remainder of the Sibelius session, or until SetUserInput_Heading_cu is called again. 
 
You can have any number of parameter  variables, all with different names. If you use GetUserInput_cu with 
the same variable name, it will overwrite the previous setting. 
 
The names of variables you create with GetUserInput_cu can be used as the parameter in any 
_cu command that takes a parameter. 
 
After running  GetUserInput_cu(strVariableName), you could use any of these commands with 
strVariableName as a parameter: 
 
Add_Text_Technique_cu(strVariableName) 
Trace_cu(strVariableName) 
MessageBoxYesNo_cu(strVariableName) 
 
// These would need properly formatted text in strVariableName 
ApplyNamedColor_cu(strVariableName) 
AddInterval_Down_Diatonic_cu(strVariableName) 
SetXOffsets_Left_Absolute_cu(strVariableName) 

 
The text that is saved needs to be appropriate to the command using it. Add_Text_Technique_cu, 
Trace_cu, and MessageBox_cu will work with any text, but ApplyNamedColor_cu needs a specific valid 
color name, and the others need numbers, so be aware of what text the variable holds. 
 
This mechanism gives you the ability to create a macro or plugin that will accept small amounts of text input 
without needing to call a plugin with a big dialog.  
  



7 
 

An Example of a parameter variable 
 
You could write something like this, to get an offset value to use in the command 
SetXOffsets_Right_Relative_cu: 
 
SetUserInput_Heading_cu(Type a horizontal right offset for selected objects, in spaces, in the next box) 
GetUserInput_cu(strXOffsetRight) 
SetXOffsets_Right_Relative_cu(strXOffsetRight) 
 

You would see the dialog  that accepts the text, 
 

 
 
 
And now the variable strXOffsetRight can be used as a command parameter for the rest of the Sibelius 
session. In this case it will be used to shift selected objects right, and you might see the selected notes shifted 3 
spaces to the right in this example: 
 
 

 
 
You would thus not need to write separate macros for each offset value you want to use, at the cost of having to 
enter a value for the offset (the message box could be optional if this was for your own use only). If you wanted 
the same offset all the time for some cases, you could have separate macros/plugins for that. 
 
You could write a separate macro for Left offsets, and for Y offsets as well. Entering a color name for 
ApplyNamedColor_cu would be another good use for this. 
  



8 
 

“Full” methods in cmdutils.plg (not available in Execute Commands) 
 
These are called by the _cu routines and can be called directly by ManuScript plugins, but may not be called in 
Execute Commands or as part of a macro.   
 
Many, but not all these methods are described in the previous cmdutils commands section. 
 
In this document, these routines are displayed in Italic. 
 
Something like Add_Text_Full (score, selection, strText, styleTextOrId, fSelectNewObject)  
can be used within a ManuScript plugin to create more types of text. You could write a plugin that has different 
styles and puts up a user input edit box, and then use the resulting plugin in Execute Commands. 
 
AddInterval_Full (score, iQuality, degreeOrSemitones, fUpward, strQuality)  
Add_Line_Full (score, selection, styleTextOrId, fSelectNewObject)  
Add_Symbol_Full (score, selection, nameOrIndexSymbol, fUseSystemStaff, fSelectNewObject)  
Add_Text_Full (score, selection, strText, styleTextOrId, fSelectNewObject)  
 
ApplyNamedColor_Full (score, selection, fApplyColor, fColorNameFromList, strNamedColor,  fAlphaChannel, strAlpha, 
fTraceResults)  
 
ApplyNoteheadStyle_Full (score, selection, strIdNote)  
 
BracketText_Full(score, selection, strBrackets)  
 
ContinueIfSelection_Full (score, selection, strMsgYesNoContinue, fIncludeSystemStaff, fNoteRestRequired, fIfEmpty, fYesNo) 
 
ContractSelection_Full (score, selection, fLeft)  
ContractSelection_UpDown_Full (score, selection, valDirection, valHidden)  
 
DataForWildcard_Full (score, selection, fSetValue, strParameters, strWildcardName, strText) 
 
DeleteSelection_Full (score, selection, fRestorePassage)  
 
ExitIfCondition_Full(score, selection, strParameters, fExitIfTrue, fYesNo) 
ExitIfPlugin_Unavailable_Full (score, strPluginMenuName, strMessagePluginUnavailable)  
ExitIfSelection_Avoid_Full (score, selection, strMessageIn, arrOptions)  
ExitIfSelection_Empty_Full(score, selection, fIncludeSystemStaff, fNoteRestRequired, strMessageIfEmpty) 
ExitIfSelection_NotPassage_Full (score, selection, strMessageIfNonPassage)  
ExitOrAll_Selection_Empty_Full (score, selection, fIncludeSystemStaff, fNoteRestRequired, strMessageIfEmpty)  
ExitOrAll_Selection_NotPassage_Full (score, selection, strMessageIfNonPassage, fIncludeSystemStaff)  
 
ExportPDF_Full(score, selection, iPart) 
 
ExtendSelection_Full (score, selection, fLeft)  
ExtendSelection_FullBar_Full (score, selection, fFullLeft, fFullRight)  
ExtendSelection_ObjTo_Full(score, selection, fNeedsNotes, strOption) 
ExtendSelection_Pages_Full (score, selection)  
ExtendSelection_UpDown_Full (score, selection, valDirection, valHidden, fGoToNextStaff)   
 
Filter_Duration_Full(score, selection, strCompare, strDuration, strType) 
 
GetFirstOrLastSelectedObjectEachStaffScoreOrder_Full (score, selection, voice, valLimitObjects, fFirst, fVisibleStaffOnly)  
GetFirstOrLastSelectedObjectScoreOrder_Full (score, selection, voice, valLimitObjects, fFirst)  
GetFirstSelectedNoteRest_Full (score, selection, fNeedsNotes)  
 
GetUserInput_Full (score, selection, strHeading, strVariableName)  
 
HideAllInvisibles_Full(score, selection, valAction, fTrace) 
 
GoToBar_Full (score, selection, barnumInternalFirstIn, valSelectionType )  
GoToPage_Full (score, selection, pagenumExternalNew, valSelectionType)  
 
IsEmptySelection_Full (score, selection, fIncludeSystemStaff, fNoteRestRequired)  
 



9 
 

MagneticLayout_Full (score, selection, valueML)  
 
MakePassageSelection_Full (score, selection,fAllowSystemObjects)  
MakeSystemPassageSelection_Full (score, selection)  
 
Panorama_Full(score, selection, fPanorama) 
 
ReduceSelectionToObject_Full (score, selection, fSelectFirstObject, fSelectPassage)  
 
RunCommandIfCondition_Full(score, selection, strParameters, fRunIfTrue, numArguments, numCommands, 
fExitAfterCommand) 
RunMacro_Full(score, selection,Valid dat file name or path plus file name) 
RunPluginEntry_Full(score, selection, strParameters) 
RunPluginHideDialog_Full (score, strPluginMenuNameCmdOrId, strMessagePluginUnavailable)  
 
SelectFirstOrLastSelectedObjectEachStaffScoreOrder_Full (score, selection, voice, valLimitObjects, fFirst, fVisibleStaffOnly)  
SelectFirstOrLast_ObjectScoreOrder_Full (score, selection, voice, valLimitObjects, fFirst)  

 
SelectOneObject_Full (score, selection, obj, fSelectPassage)  
 
Select_All_Passage_Full (score, selection, fSystemPassage)  
Select_Bars_Full (score, selection, barnumInternalFirstIn, fSelectFirstBarFullyOnly, fForceSystemSelect)  
 
SetPlayOnPass_Full(score, selection, fNoteRestOnly, arrPassOnOff)) 
 
SetScoreRedraw_Full (score, fRedraw)  
 
SetTextCase_Full (score, selection, iCase)  
SetTextFormat_Full (score, selection, fResetToDefault, fBold, fItalic, fUnderlined, strSubSuperScript)  
 
SetXOffsets_Full (score, selection, xOffsetInSpaces, iActionForLines, fRight, fRelative)  
SetYOffsets_Full (score, selection, yOffsetInSpaces, iActionForLines, fUp, fRelative)  
 
SplitBarRestsAtBeat_Full (score, selection, strBeatToSplit, voice, fSplitHiddenBars)  
SplitBarRestsForPassage_Full (score, selection,  voice, fSplitHiddenBars)  
 
TestSelection_Avoid_Full (score, selection, strMessageIn, arrOptions)  
TestSelection_Needs_Full (score, selection, strMessageIn, fRequireOneStaff,  fRequireFullSelect, valRequireGrandStaff)  
 
TracePlugins_HideableDialog_Full (fFillGlobalList)  
TraceSelection_Full (score, selection)  
Trace_LineStyleIdFromName_Full (score, selection, strName, fWarn)  
Trace_NoteStyleIndexFromName_Full (score, selection, strName, fWarn)  
Trace_Object_Type_Name_StyleOrIndex_Full (score, selection)  
Trace_SymbolIndexFromName_Full (score, selection, strName, fWarn)  
Trace_TextStyleIdFromName_Full (score, selection, strName, fWarn)  
 
TransposeInterval_Full(score, selection, strQuality, strNumber, fKeepDoubleAccidentals, fTransposeKeys, fDown, 
fReportError)  
 
ViewInvisibles_Full(name, param)  



10 
 

Classes of Cmdutils Commands 
 
There are several classes of Cmdutils Commands. 
 

Add Object and “Add and Select” Commands 
 
These add objects to the current selection, mimicking the way Commands work. These routines use the current 
selection of Sibelius.ActiveScore, but they all call lower-level routines where the score, selection, and certain 
more advanced features  may be explicitly specified. I have tried to make the top level routines use as few 
parameters as possible. 
 
Add Object commands typically return the object created.  
 
If the AddSelect form is used, the created object will be selected (non-passage selection), but if the add fails 
the selection will be cleared. You can call ContinueIfSelection_Empty_cu(strMsgYesNoContinue), or 
ExitIfSelection_Empty_cu(strMessageIfEmpty) to exit the plugin if the selection had been cleared, 
indicating that the add had been unsuccessful.  
 
Using the AddSelect forms in combination with SaveSelection_cu and RestoreSelection_cu can be an 
effective way to add and manipulate an object, and then continue. Here is an example: 
 
SaveSelection_cu() 
AddSelect_Text_Technique_cu(I am a bold one!) 
SetTextFormat_Bold_cu() 
RestoreSelection_cu() 

 
Notice that the parameter in AddSelect_Text_Technique_cu has been edited from its original placeholder 
value. 
 
You need to be careful about adding objects into a selection while you are walking through the selection in a 
plugin’s “for each” loop, since adding or deleting objects will change the selection and disturb the loop. 
 
There are many predefined Line and Text style commands available in Execute Commands.  
 
You can also call Add_Line_cu(styleTextOrId), which adds a line of the requested line style. 
styleTexOrId must be a StyleAsText or StyleId string which is valid in the score, spelled EXACTLY as 
ManuScript expects it to be. It is very easy to get the styleTextOrId wrong,  so only use this if you really need 
the flexibility. 
 
If you need more Text styles, call Add_Text_cu([styleId,]strText) to add the text.  
 
Originally, there was no way to specify the style id in this command, but you can now specify a Text styleId at 
the start of the parameter string, followed by a comma. If you do not explicitly set the text style, 
Add_Text_cu will use Technique text style or the text style set by TextStyleDefaultForCommands_cu. 
The text style set by TextStyleDefaultForCommands_cu will remain active for the remainder of the 
Sibelius session unless it is changed by another call to TextStyleDefaultForCommands_cu. 
 
Text formatting wildcards such as \B\ and \I\ can be included in strText. 
 

Identifying objects to be added  
 
You can apply Notehead Styles or add symbols in Execute Commands, but you need to know the Style or 
other identifier for the object you are creating, and it must be spelled EXACTLY as ManuScript expects it to be. 
 
In general, objects have a language-specific name (often called StyleAsText) and a language-independent 
identifier, often called a StyleId. To make macros or plugins as portable as possible, you should use the 



11 
 

StyleId rather than the StyleAsText, but either will work in the same language in which the macro or plugin 
was written. User-defined styles also will not work if that style is not defined in the current score. 
 
If you know the StyleAsText name for Lines, Text, Symbols, or Noteheads, you can find the StyleId or index 
for such objects by running one of these Trace commands, editing the command to contain the name, and 
looking in the trace window.  
 
Trace_LineStyleIdFromName_cu(Glissando (wavy)) 
Trace_NoteStyleIndexFromName_cu(Diamond) 
Trace_SymbolIndexFromName_cu(Mordent) 
Trace_TextStyleIdFromName_cu(Technique) 

• These can be used with a properly spelled name to get the language-independent StyleId of Index for the name.  
 

Now you can edit the Add command to use the language-independent id or index. 
 
Alternatively, you can select some objects that you want the identifier for and call 
 
Trace_Object_Type_Name_StyleOrIndex_cu() 

• This can be used by selecting appropriate objects in your score to get the language-independent StyleId of Index for the 
objects. This is probably the easiest way to find such ids. 

 
 

  



12 
 

Add Object Commands 
 
Some of these commands have placeholder parameters, and any parameter can be edited with Edit 
Command.  Some can work with the placeholder, but most of the commands in this category will always need 
to be changed. For example,  Add_Line_cu(styleTextOrId) must be given a valid line style name or id to 
replace styleTextOrId. 
 
Add_Bars_At_End_cu(1) 
 
Add_Line_cu(styleTextOrId) 

• Adds a line of the requested style. styleTexOrId must be a StyleAsText or StyleId valid in the score, spelled EXACTLY as 
ManuScript expects it to be. 

Add_Line_8va_cu() 
Add_Line_Box_cu() 
 
Add_Line_Bracket_Vertical_Left_cu() 
Add_Line_Bracket_Vertical_Right_cu() 
Add_Line_Ending_First_cu() 
Add_Line_Ending_Second_cu() 
Add_Line_Hairpin_Crescendo_cu() 
Add_Line_Hairpin_Diminuendo_cu() 
Add_Line_Plain_cu() 
Add_Line_Slur_cu() 
Add_Line_Trill_cu() 
Add_Line_Vertical_cu() 

• Adds a line of the specified style to the selection 

• Some of the lines, especial vertical lines like brackets and box lines are given slightly different (and better, in my opinion) 
positions that Sibelius uses in the Lines menu. 

Add_Line_Full (score, selection, styleTextOrId, fSelectNewObject)  

• Adds a line of the requested style. styleTexOrId must be a StyleAsText or StyleId valid in the score, spelled EXACTLY as 
ManuScript expects it to be. Can only be called in ManuScript plugins. 

 
Add_StaffSymbol_cu (nameOrIndexSymbol)  
Add_SystemSymbol_cu (nameOrIndexSymbol)  
 
Add_Symbol_Full (score, selection, nameOrIndexSymbol, fUseSystemStaff, fSelectNewObject)  

• Adds a SymbolItem or SystemSymbolItem to the selection. nameOrIndexSymbol is either a symbol name or an index into the 
symbol table, spelled EXACTLY as ManuScript expects it to be. Can only be called in ManuScript plugins. 

 
Add_Text_cu([styleId,]strText) 

• Add a Text object to the selection. 

• This is an unusual command that can specify both a style id and the text to be displayed. If the optional Text styleId is present, 
it must be followed by a comma but no spaces. Any spaces following the comma will be considered to be part of the text to be 
displayed. 

• If the optional styleId is not present, this command will use the text style that was set by running the 
TextStyleDefaultForCommands _cu(styleTextOrId) command, or will add Technique text if the text style is not set. 

Add_Text_Dynamics_cu (strText)  

• Add a dynamics text object with Expression text style and MusicText character style, so the text will be correctly formatted. 
Add_Text_Expression_cu (strText)  

• Add an Expression text object to the selection 
Add_Text_Technique_cu (strText)  

• Add a Technique text object to the selection 
 

Add_Text_Full (score, selection, strText, styleTextOrId, fSelectNewObject)  

• Add a text or system text object (determined by the style id). styleTexOrId must be a StyleAsText or StyleId defined in the 
score. Can only be called in ManuScript plugins. 

 
ApplyNoteheadStyle_cu (strIdNote)  
 
ApplyNoteheadStyle_Full (score, selection, strIdNote) 

• Changes the notehead style of all selected notes. strIdNote is either a numeric index or a valid Note Style Name, spelled 
EXACTLY as ManuScript expects it to be. Can only be called in ManuScript plugins. 

 
TextStyleDefaultForCommands _cu(styleTextOrId) 

• The commands AddSelect_Text_cu and AddSelect_Text_cu can now specify a style id in their parameter list, so this command  
should no longer be needed. 



13 
 

• Stores the value of strtTextOrId for the remainder of the Sibelius session so it can be used by Add_Text_cu and 
AddSelect_Text_cu 

• It is best to always run this immediately before running Add_Text_cu or AddSelect_Text_cu or any other command that 
may use this value. 

 
Trace_Object_Type_Name_StyleOrIndex_cu() 

• This can be used by selecting appropriate objects in your score to get the language-independent StyleId of Index for the 
objects. This is probably the easiest way to find such ids. 

Trace_LineStyleIdFromName_cu(Glissando (wavy)) 
Trace_NoteStyleIndexFromName_cu(Diamond) 
Trace_SymbolIndexFromName_cu(Mordent) 
Trace_TextStyleIdFromName_cu(Technique) 

• These can be used with a properly spelled name to get the language-independent StyleId of Index for the name.  
 

 

“Add and Select” Commands 
 
These work the same way as the Add commands except that at the end the added object will be the only thing 
selected. It can be useful to call SaveSelection_cu before making such a call, and then after having 
manipulated the new object you can restore the previous selection using RestoreSelection_cu. 
 
For example, you can create a Text object with Add_Text_Technique_cu (strText), but you may want to 
change some properties that were not set when you created the object. If you wanted the text to be bold, you 
could write something like this: 
 
SaveSelection_cu() 
AddSelect_Text_Technique_cu(I am a bold one!) 
SetTextFormat_Bold_cu() 
RestoreSelection_cu() 

 
which adds and selects a Technique Text object, makes it bold, and then restores the original selection. 
 
Some of these commands have placeholder parameters, and any parameter can be edited with Edit 
Command.  The placeholder parameters for the commands in this category will always need to be changed. 
For example,  AddSelect_StaffSymbol_cu (nameOrIndexSymbol) must be given a valid symbol name 
or number to replace nameOrIndexSymbol. 
 
AddSelect _Line_cu(styleTextOrId) 
 
AddSelect _Line_8va_cu() 
AddSelect _Line_Box_cu() 
AddSelect_Line_Bracket_Vertical_Left_cu() 
AddSelect_Line_Bracket_Vertical_Right_cu() 
AddSelect_Line_Ending_First_cu() 
AddSelect_Line_Ending_Second_cu() 
AddSelect_Line_Hairpin_Crescendo_cu() 
AddSelect_Line_Hairpin_Diminuendo_cu() 
AddSelect_Line_Plain_cu() 
AddSelect_Line_Slur_cu() 
AddSelect_Line_Trill_cu() 
AddSelect_Line_Vertical_cu() 
 
AddSelect_StaffSymbol_cu (nameOrIndexSymbol)  
AddSelect_SystemSymbol_cu (nameOrIndexSymbol)  
 
AddSelect_Text_cu ([styleId,]strText) 

• Add a Text object to the selection. 

• This is an unusual command that can specify both a style id and the text to be displayed. If the optional Text styleId is present, 
it must be followed by a comma but no spaces. Any spaces following the comma will be considered to be part of the text to be 
displayed. 

• If the optional styleId is not present, this command will use the text style that was set by running the 
TextStyleDefaultForCommands _cu(styleTextOrId) command or will add Technique text if the text style is not set. 

 



14 
 

 
AddSelect_Text_Dynamics_cu (strText)  
AddSelect_Text_Expression_cu (strText)  
AddSelect_Text_Technique_cu (strText)  
 

Add lntervals Commands 
 
These commands have placeholder parameters, and any parameter can be edited with Edit Command.  The 
placeholder parameters for the commands in this category will often need to be changed. Numbers from 1 
(unison) to 8 (octave) are allowed, though each interval type has some restrictions. You cannot add a Perfect 
2nd or a Minor 5th, for example. 
 
 
AddInterval_Down_Augmented_cu(5) 
AddInterval_Down_Diatonic_cu(2) 
AddInterval_Down_Diminished_cu(5) 
AddInterval_Down_DoubleAugmented_cu(2) 
AddInterval_Down_DoubleDiminished_cu(2) 
AddInterval_Down_Major_cu(3) 
AddInterval_Down_Minor_cu(3) 
AddInterval_Down_Perfect_cu(8) 
AddInterval_Down_Semitones_cu(1) 
 
AddInterval_Up_Augmented_cu(5) 
AddInterval_Up_Diatonic_cu(2) 
AddInterval_Up_Diminished_cu(5) 
AddInterval_Up_DoubleAugmented_cu(4) 
AddInterval_Up_DoubleDiminished_cu(4) 
AddInterval_Up_Major_cu(3) 
AddInterval_Up_Minor_cu(3) 
AddInterval_Up_Perfect_cu(8) 
AddInterval_Up_Semitones_cu(1) 
 

• These add a specified interval above the top note or below the bottom note of a chord, just as Sibelius does when you type 
numbers on the numeric keypad. They call into the downloadable plugin Add Interval, which must be installed for these to 
work. It provides more combinations of intervals than Sibelius itself does. 

• The command names tell you the type of interval to add, and the parameters are numbers, where 1 is a unison, 2 a second, 3 a 
third, and so forth, including octaves for number greater than 7. 

 

Transpose Intervals Commands 
 
These commands have placeholder parameters, and any parameter can be edited with Edit Command.  The 
placeholder parameters for the commands in this category will usually need to be changed.  
 

• The first parameter is a number (the degree), where 1 is a unison, 2 a second, 3 a third, and so forth, up 
to 14, which is the limit for the plugin Transpose By Interval. Each interval quality (major, minor,…) 
has some restrictions. You cannot add a Perfect 2nd or a Minor 5th, for example. 

 

• The second and third parameters are optional, and can only be yes or no. 
o The second parameter is KeepDoubleAccidentals. If there is only 1 parameter it defaults to 

yes. 
o The third parameter is TransposeKeySignatures. If there is only 1 parameter it defaults to 

no. 
 
TransposeInterval_Down_Augmented_cu(5,yes,no) 
TransposeInterval_Down_Diatonic_cu(2,yes,no) 
TransposeInterval_Down_Diminished_cu(5,yes,no) 
TransposeInterval_Down_DoubleAugmented_cu(4,yes,no) 
TransposeInterval_Down_DoubleDiminished_cu(4,yes,no) 
TransposeInterval_Down_Major_cu(3,yes,no) 
TransposeInterval_Down_Minor_cu(3,yes,no) 
TransposeInterval_Down_Perfect_cu(8,yes,no) 
 



15 
 

TransposeInterval_Up_Augmented_cu(5,yes,no) 
TransposeInterval_Up_Diatonic_cu(2,yes,no) 
TransposeInterval_Up_Diminished_cu(5,yes,no) 
TransposeInterval_Up_DoubleAugmented_cu(4,yes,no) 
TransposeInterval_Up_DoubleDiminished_cu(4,yes,no) 
TransposeInterval_Up_Major_cu(3,yes,no) 
TransposeInterval_Up_Minor_cu(3,yes,no) 
TransposeInterval_Up_Perfect_cu(8,yes,no) 

• These commands transpose the notes in the selection. They call into the downloadable plugin Transpose By Interval, which 
must be installed for these to work. Transpose By Interval provides more combinations of intervals than Sibelius itself 
does. 

 

• The command names tell you the direction and the quality of interval to add. The parameters provide the Interval Number, 
Use double sharps/flats, and Transpose Key Signatures. 

o the first parameter is a number, where 1 is a unison, 2 a second, 3 a third, and so forth, up to 14, which is the limit for 
Transpose By Interval. 

o The second and third parameters are optional, and can only be yes or no. 
▪ The second parameter is KeepDoubleAccidentals. If there is only 1 parameter it will default to yes. 

o The third parameter is TransposeKeySignatures. If there is only 1 parameter it will default to no. It is only 
enabled if all the staves in the score are selected. 

  



16 
 

Selection commands 
 
This is a large group, which could be subdivided into a few subgroups which could be called Select All, Contract 
Selection, Expand Selection, Go To, Select First Or Last, and Other (including SaveSelection and 
RestoreSelection). A number of the Command Exit commands are also related to selections. 
 
These commands have no parameters, except for the “_Full” versions, which are only accessible in ManuScript 
plugins. 
 
ContractSelection_Left_cu ()  

• Move the right end of the selection one note/rest to the left 
ContractSelection_Right_cu () 

• Move the left end of the selection one note/rest to the right 
ContractSelection_Down_cu() 

• Move the top staff in the selection down 1 staff. There is no special handling for hidden staves. Converts non-passage selection 
to a passage before contracting. 

ContractSelection_Up_cu() 

• Move the bottom staff in the selection up 1 staff. There is no special handling for hidden staves. Converts non-passage selection 
to a passage before contracting. 

 
ContractSelection_Visible_ Down_cu() 

• Move the top staff in the selection down to the next visible staff. Converts non-passage selection to a passage before 
contracting. Any hidden staves skipped are excluded from the selection, but this will not produce a discontiguous passage 
selection. 

ContractSelection_Visible_Up_ cu() 

• Move the bottom staff in the selection up to the next visible staff. Converts non-passage selection to a passage before 
contracting. Any hidden staves skipped are excluded from the selection, but this will not produce a discontiguous passage 
selection. 

 
ContractSelection_Full (score, selection, fLeft)  

• Reduce the size of the selection by moving the end left or right. It will convert a non-passage selection to a passage selection. 
Can only be called in ManuScript plugins. 

ContractSelection_UpDown_Full (score, selection, valDirection, valHidden) 

• Reduce the size of the selection by moving the top or bottom staff up or down 1 staff. Converts non-passage selection to a 
passage before contracting. Can only be called in ManuScript plugins. 

 
Copy_cu() 

• Duplicates the Sibelius Copy command 
Cut_cu() 

• Duplicates the Sibelius Cut command 
 
DeleteSelection_cu() 

• Deletes all the selected objects but does not delete the staff even if the entire staff is selected.  
Deselect_Hidden_Staves_cu() 

• Excludes staves all of whose selected bars are hidden, possibly creating a discontiguous passage selection. Requires a passage 
selection to work. 

• Run TraceSelection_cu after this command while debugging to see which staves are still in the selection. 
 

 
ExtendSelection_Left_cu ()  

• Move the left end of the selection one note/rest to the left 
ExtendSelection_Right_cu ()  

• Move the right end of the selection one note/rest to the right 
ExtendSelection_Down_cu() 

• Move the bottom staff in the selection down 1 staff. Converts non-passage selection to a passage before extending. 
ExtendSelection_DownTo_BottomStaff_cu() 

• Move the bottom staff in the selection down to the bottom staff of the score. Converts non-passage selection to a passage 
before extending. 

ExtendSelection_Up_cu() 

• Move the top staff in the selection up 1 staff. Converts non-passage selection to a passage before extending. 
ExtendSelection_UpTo_TopStaff_cu() 

• Move the top staff in the selection up to the top staff of the score.  Converts non-passage selection to a passage before 
extending. 

ExtendSelection_Visible_Down_cu 



17 
 

• Move the bottom staff in the selection down to the next visible staff. Converts non-passage selection to a passage before 
extending. 

ExtendSelection_Visible_Up_cu 

• Move the top staff in the selection up to the next visible staff. Converts non-passage selection to a passage before extending. 
ExtendSelection_Full (score, selection, fLeft)  

• Extend the size of the selection by moving the end left or right. It will convert a non-passage selection to a passage selection. 
These mimic Selection Commands that are not currently accessible to plugins, Can only be called in ManuScript plugins. 

ExtendSelection_UpDown_Full (score, selection, valDirection, valHidden, fGoToNextStaff)  

• Extend the size of the selection by moving the top or bottom staff up or down. Converts non-passage selection to a passage 
before extending. Can only be called in ManuScript plugins. 

 
ExtendSelection_ObjTo_Bar_cu() 
ExtendSelection_ObjTo_Page_cu() 
ExtendSelection_ObjTo_Staff_cu() 
ExtendSelection_ObjTo_System_cu() 

 
ExtendSelection_ObjTo_Full(score, selection, fNeedsNotes, strOption)  (Can only be called in ManuScript plugins.) 

• These make a passage selection starting from the first Note, Rest or BarRest in the current selection. The selection will include 
the bar, staff, page, or system containing the first selected object. 

• These are analogous to clicking in white space of a bar (_Bar), double clicking in a bar (_System), triple clicking in a staff 
(_Staff).  

• ExtendSelection_ObjTo_Page_cu has no Sibelius analog; it selects the entire page that contains the first selected object. 
Unlike ExtendSelection_Pages_cu it only extends from the first selected object, and not from both the first and last object, 
so it will always select a single page. 

 
ExtendSelection_Pages_cu ()  
 
ExtendSelection_Pages_Full (score, selection)  

• Get the first bar number on the page containing the first selected object, and the last bar number on the page containing the 
last selected object, and make a passage selection between those bars. Can only be called in ManuScript plugins. 

 
ExtendSelection_FullBar_Left_cu() 

• Make the first bar in the selection be fully selected 
ExtendSelection_FullBar_LeftRight_cu() 

• Make the first and last bar in the selection be fully selected 
ExtendSelection_FullBar_Right_cu() 

• Make the last bar in the selection be fully selected 
ExtendSelection_FullBar_Full(score, selection, fFullLeft, fFullRight) 

• Make the first and/or last bar in the selection be fully selected 
 
FilterAllSelected_cu ()  

• Turns a passage selection into a group of separately selected objects, as a filter would do. 
FilterDynamicsText_cu() 

• Filters Expression Text, or text derived from Expression, containing a change to the Music Text Font. Finds p, mf, etc. 
FilterHighlights_cu() 

• Filters HighLight line objects, since there is no built-in filter for these. 
 

GoToFirstScoreObject_cu() 

• Selects the first staff object in the score (not a passage selection), and brings the selection into view. 
GoToFirstScoreObject_SystemOK_cu() 

• Selects the first staff or system object in the score (not a passage selection), and brings the selection into view. 
GoToLastScoreObject_cu() 

• Selects the last staff object in the score (not a passage selection), and brings the selection into view. 
GoToLastScoreObject_SystemOK_cu() 

• Selects the last staff or system object in the score (not a passage selection), and brings the selection into view. 
 
GoToFirstBar_cu() 
GoToLastBar_cu() 
GoToNextBar_cu() 
GoToPreviousBar_cu() 

• Makes a system passage selection in the desired bar, and brings the selection into view. 
 
GoToNextPage_cu() 
GoToPreviousPage_cu() 

• Makes a system passage selection in first bar of the desired page, and brings the selection into view. 
 
MakePassageSelection_cu ()  



18 
 

• Turns a non-passage selection into a passage selection that includes all the previously selected objects, ignoring selected 
system objects, or converts a system selection to a passage selection.  The final selection will never be a system selection. 

 
MakePassageSelection_AllowSystemObjects_cu ()  

• Turns a non-passage selection into a passage selection that includes all the previously selected objects, including selected 
system objects. This does not convert a system selection to a passage selection. If system objects are found the resulting 
selection will be a system passage selection.The final selection may or may not be a system selection. 

 
MakeSystemPassageSelection_cu()  

• Turns a non-passage selection into a system selection that includes all the previously selected objects, including selected 
system objects. This is equivalent to running MakePassageSelection_AllowSystemObjects_cu followed by the Sibelius 
command Select System Passage. The final selection will always be a system selection. 

 
Paste_cu 

• Duplicates the Sibelius Paste command 
 
SelectAll_Passage_cu() 
• Makes a non-system passage selection of the entire score 
SelectAll_Passage_System_cu() 
• Makes a system passage selection of the entire score 
SelectAll_NonPassage_cu() 
• Makes a non-system passage selection of the entire score excluding objects in the system staff 
SelectAll_NonPassage_System_cu() 
• Makes a non-passage selection of the entire score 
 
SelectAll_Full(score, selection, fSystemPassage) 

• Makes a passage selection of the entire score. Can only be called in ManuScript plugins. 
 
SaveSelection_cu ()  

• Saves the current selection so it can be restored later. This is most useful for a passage selection. 
RestoreSelection_cu ()  

• Restores the most recent selection saved by SaveSelection_cu. 
 

Select_First_NoteChordNoRest_cu ()  
Select_First_NoteChordNoRest_EachStaff_cu ()  
Select_First_NoteChordRest_cu ()  
Select_First_NoteChordRest_EachStaff_cu ()  
Select_First_Object_cu ()  
Select_First_Object_EachStaff_cu ()  

• These put the selected objects into chronological score order if needed, then selects the first object in the selection or in each 
staff in the selection. 

Select_Last_NoteChordNoRest_cu ()  
Select_Last_NoteChordNoRest_EachStaff_cu ()  
Select_Last_NoteChordRest_cu ()  
Select_Last_NoteChordRest_EachStaff_cu ()  
Select_Last_Object_cu ()  
Select_Last_Object_EachStaff_cu ()  

• These put the selected objects into chronological score order if needed, then selects the last object in the selection or in each 
staff in the selection. 

 
Select_None_cu() 

• Clears the selection. 
 
SelectFirstOrLast_ObjectOneStaffScoreOrder_Full (score, selection, staffnum, voice, valLimitObjects, fFirst, 
fVisibleStaffOnly)  
 
SelectFirstOrLast_ObjectScoreOrder_Full (score, selection, voice, valLimitObjects, fFirst) 
 
SelectFirstOrLastSelectedObjectEachStaffScoreOrder_Full(score, selection, voice, valLimitObjects, fFirst, fVisibleStaffOnly) 

• These put the selected objects into chronological score order if needed, then select the first or last object in the selection or in 
each staff in the selection. Can only be called in ManuScript plugins. 

 
ShiftSelectionNextBar_cu() 
ShiftSelectionPreviousBar_cu() 

• These move the passage selection by one bar right or left. 
 

ShiftSelectionUpOrDownOneStaff_cu(strUpOrDown) 
ShiftSelectionUpDownOneStaff_Visible_cu(strUpDown) 



19 
 

• Move the passage selection up or down one staff. strUpOrDown must be “up” or “down”. When there is an error, a YesNo 
message box will be shown to allow the user to stop the plugin or continue with the selection unchanged. 

• ShiftSelectionUpDownOneStaff_Visible_cu will move the selection so it selects the next visible staff when possible, 
skipping over hidden staves, which will be added to the selection. 

• ShiftSelectionUpOrDownOneStaff_cu treats hidden staves as if visible and will go up or down to the next staff, even if 
hidden. 

 
TraceSelection_cu ()  
TraceSelection_Full (score, selection)  

• Write a description of the current selection to the Plugin Trace Window. Can be useful for debugging.  

• The Full version can only be called in ManuScript plugins. 
 
 

Plugin Exit Commands 

 
These routines will check for an empty or non-passage selection, or a passage selection that does not include 
specific staves or bars, or whether a plugin is installed. If found, they will give a warning and either Exit, or ask 
if you want to continue, possibly after selecting the entire score. 
 
Most of these commands have placeholder parameters, and any parameter can be edited with Edit 
Command.  The placeholder parameters for the commands in this category will always need to be changed.  
 
The “_Full” versions of these commands are only used in ManuScript plugins, not in Command 
Macros or Command Plugins. They will appear in Italic font style in this document. 
 
ContinueIfSelection_Empty_cu(strMsgExit)  
ContinueIfSelection_Empty_YesNo_cu(strMsgYesNoContinue) 
 
ContinueIfSelection_NotEmpty_cu(strMsgExit) 
ContinueIfSelection_NotEmpty_YesNo_cu(strMsgYesNoContinue) 
 
ContinueIfSelection_Full (score, selection, strMsgYesNoContinue, fIncludeSystemStaff, fNoteRestRequired, fIfEmpty, fYesNo) 

• Exits the plugin if there is no selection and the user responds No in the message box. strMsgYesNoContinue is the message the 
user will see. The “full” routine can only be called in ManuScript plugins. 

 
ExitIfSelection_Empty_cu (strMessageIfEmpty)  
 
ExitIfSelection_Empty_Full (score, selection, fIncludeSystemStaff, fNoteRestRequired, strMessageIfEmpty)  

• Exits the plugin  if there is no selection. The “full” routine can only be called in ManuScript plugins. 
 
ExitIfSelection_NotPassage_cu (strMessageIfNotPassage)  
 
ExitIfSelection_NotPassage_Full (score, selection, strMessageIfNonPassage)  

• Exits the plugin  if there is no passage selection. The “full” routine can only be called in ManuScript plugins. 
•  

ExitOrAll_Selection_Empty_cu(strMessageIfEmpty) 
 
ExitOrAll_Selection_Empty_Full(score, selection, fIncludeSystemStaff, fNoteRestRequired, strMessageIfEmpty) 

• Exits the plugin if there is no selection, or selects the entire score (non-system selection) and continues. The “full” routine can 
only be called in ManuScript plugins. 

 
ExitOrAll_Selection_NotPassage_cu(strMessageIfNotPassage) 
 
ExitOrAll_Selection_NotPassage_Full(score, selection, strMessageIfNonPassage, fIncludeSystemStaff) 

• Exits the plugin  if there is no passage selection, or selects the entire score (non-system selection) and continues. The “full” 
routine can only be called in ManuScript plugins. 

•  
ExitPlugin_cu 

• Exits the plugin immediately. Can be useful when debugging as a way to run a part of a macro and then stop. 
 
ExitIfPlugin_Unavailable_cu (strPluginName)  
 
ExitIfPlugin_Unavailable_Full (score, strPluginName, strMessagePluginUnavailable)  

• Exits the plugin if a required plugin is not installed. The “full” routine can only be called in ManuScript plugins. 



20 
 

• These plugin identifiers will all be valid strPluginNames: "Resize Bar", "Resize Bar(plug-in 200)", "ResizeBar", "ResizeBar.plg". 

• "resizebar" will not match the file name " ResizeBar " because the letter case is different. 
 

ExitIfSelection_Avoid_BottomStaff_cu(strMessage) 
ExitIfSelection_Avoid_FirstBar_cu(strMessage) 
ExitIfSelection_Avoid_LastBar_cu(strMessage) 
ExitIfSelection_Avoid_TopStaff_cu(strMessage ) 
 
ExitIfSelection_Avoid_GrandStaff_Bottom_cu(strMessage) 
ExitIfSelection_Avoid_GrandStaff_Top_cu(strMessage) 

• These will exit the plugin or macro if there is a selection that includes a “forbidden” staff or bar. If the selection is not a 
passage selection, it will be temporarily converted into a passage selection that includes all the selected objects, and then 
restored after the tests are complete. 

 
ExitIfSelection_Needs_GrandStaff_All_cu(strMessage) 
ExitIfSelection_Needs_GrandStaff_Any_cu(strMessage.) 

• This will exit the plugin or macro if there is a selection that does not contain specific staves in a multi-staff instrument, such 
as a grand staff.  If the selection is not a passage selection, it will be temporarily converted into a passage selection that 
includes all the selected objects, and then restored after the tests are complete. 

ExitIfSelection_Needs_OneStaff_cu(strMessage) 

• This will exit the plugin or macro if This will exit the plugin or macro if there is a selection that contains anything other than a 
single staff. If the selection is not a passage selection, it will be temporarily converted into a passage selection that includes all 
the selected objects, and then restored after the tests are complete. 
 

ExitIfSibeliusVersion_LessThan_cu(SibeliusVersionNumber) 

• This will exit the plugin or macro if the current Sibelius version number is earlier than the specified version number, which 
must be in the format YYYY.M[M].P[P], where the month (M[M]) field and the version (P[P]) field must have 1 or 2 digits. The 
earliest valid value for SibeliusVersionNumber is 2021.9.0. 
 

MessageBoxYesNo_Exit_No_cu(strMsgYesNo) 
MessageBoxYesNo_Exit_Yes_cu(strMsgYesNo) 

• Puts up a message box with the string displayed. 
• The No version will exit the plugin if the user replies No. 
• The Yes version will exit the plugin if the user replies Yes. 

 

The “IfCondition” forms of these commands allow you to specify a condition, chosen from a limited set of 
conditions defined in the plugin Evaluate Plugin Condition, which must be installed to use these 
commands. They decide to exit or continue based on whether the condition evaluates to True or False, or to run 
additional commands depending on how the condition evaluates. See If condition commands in cmdutils 
and Execute Commands for more details. Evaluate Plugin Condition can be modified by a ManuScript 
programmer to add additional conditions. 
 
ExitIfConditionFalse_cu(condition,message) 
ExitIfConditionFalse_YesNo_cu(condition,message) 
 
ExitIfConditionTrue_cu(condition,message) 
ExitIfConditionTrue_YesNo_cu(condition,message) 

• These commands evaluate a condition, and based on the results, will make the plugin exit or continue. On exit these will put 
up a message box. 

 
 ExitIfCondition_Full(score, selection, strParameters, fExitIfTrue, fYesNo) 

• Exits the plugin if the condition evaluates as expected. strParameters is the comma-separated fields condition,message. The 
“full” routine can only be called in ManuScript plugins. 

RunCommand1IfConditionFalseElseCommand2_cu(condition,command1,command2,traceNoYes) 
RunCommand1IfConditionTrueElseCommand2_cu(condition,command1,command2,traceNoYes) 
 
RunCommandAndExitIfConditionFalse_cu(condition,command,traceNoYes) 
RunCommandAndExitIfConditionTrue_cu(condition,command,traceNoYes) 
 
RunCommandIfConditionFalse_cu(condition,command,traceNoYes) 
RunCommandIfConditionTrue_cu(condition,command,traceNoYes) 

• These commands evaluate a condition, and based on the results, will run a command before returning. These commands 
can be Sibelius commands, cmdutils commands, or plugins. Plugins could be very useful as commands to be run. 



21 
 

• The parameter traceNoYes can only be one of the 2 strings (not in quotes): trace_no (the default) or trace_yes. Use 
trace_yes if you are debugging the command and want to see some traced debug data. In a finalized command, this 
parameter should always be trace_no. 

 
RunCommandIfCondition_Full(score, selection, strParameters, fRunIfTrue, numArguments, numCommands, 
fExitAfterCommand) 

• These commands evaluate a condition, and based on the results, will run a command before returning. These commands can 
be Sibelius commands, cmdutils commands, or plugins. Plugins could be very useful as commands to be run. The “full” routine 
can only be called in ManuScript plugins. 

•  

Text formatting commands 
 
Except for the “_Full” commands, these commands do not have parameters. 
 
BracketText_cu() 

• Puts parentheses () around all selected text objects. 

• Requires the Bracket Text plugin (version 01.98.00 or later). 
BracketText_ChooseBrackets_cu([,]) 

• Puts user-specified bracket characters around all selected text objects. 

• Parameters are <open bracket character>,<close bracket character> 

• Requires the Bracket Text plugin (version 01.98.00 or later). 
SetTextCase_Lower_cu() 
SetTextCase_Upper_cu() 
SetTextCase_ToggleCase_cu() 
SetTextCase_WordInitialUpper_cu() 

• Changes case of selected text objects, including text with formatting  

• FOR UNACCENTED (ASCII) Upper and Lower case only  
o UNLESS the plugin MakeChangecase is installed, in which case international characters can be 
o translated.  MakeChangecase is installed automatically if you install the Change Case plugin. 
o Code was taken  from the ChangeCase plugin. 

• Text using fonts that do not support upper or lower case may have problems 

• Dynamics text is not changed 

• Wildcards are not changed 
 
SetTextFormat_BoldItalic_cu() 
SetTextFormat_Bold_cu() 
SetTextFormat_Italic_cu() 
SetTextFormat_Normal_cu() 
SetTextFormat_Underlined_cu() 
 
SetTextFormat_Position_Normal_cu()* 
SetTextFormat_Position_Subscript_cu() 
SetTextFormat_Position_Superscript_cu() 
 
SetTextFormat_Full(score, selection, fResetToDefault, fBold, fItalic, fUnderlined, strSubSuperScript) 

• Sets Text formatting properties on any selected Text, SystemTextItem, or LyricItem objects. 
• There is no way to remove individual properties, but SetTextFormat_Normal_cu() can reset all formatting to normal and you 

can then add back desired properties. 

• SetTextFormat_Position_Normal_cu()* is ignored for Lyrics due to ManuScript limitations. 
• The “full” routine can only be called in ManuScript plugins. 

 

View Tab Commands 
 
HideAllInvisibles_Toggle_cu() 

• Toggles the state of the Hide All Invisibles button by running the command View ► Invisibles ► Hide All. 
HideAllInvisibles_Hide_cu() 

• Sets the state of the Hide All Invisibles button to “hide” 
HideAllInvisibles_Show_cu() 

• Sets the state of the Hide All Invisibles button to “show” 
 
HideAllInvisibles_Store_Current_Setting_cu() 
HideAllInvisibles_Restore_Setting_cu() 

• These store the current setting of Hide All Invisibles (for the current Sibelius session only), or restore any store setting. These 
are comparable to Store Current Selection and Restore Selection, and allow you to change the setting as needed and then 
restore the original setting. 



22 
 

 
HideAllInvisibles_Current_cu() 

• Returns the current state of the Invisibles Hide All Invisibles setting (“show” or “hide”) after the operation is done. This value 
is only accessible when invoked in a ManuScript plugin, so it is not included in the commands available to Execute Commands. 

 
HideAllInvisibles_Full(score, selection, valAction, fTrace) 

• Called by the HideAllInvisibles… methods above. The return value is “show” or “hide”, reflecting the state of the Invisibles 
Hide All Invisibles setting after the operation is done. Can only be called in ManuScript plugins. 
 

PanoramaOff_cu() 

• Sets View Panorama off. Provides non-toggling setting. 
PanoramaOn_cu() 

• Sets View Panorama on. Provides non-toggling setting. 
 

Panorama_Full(score, selection, fPanorama) 

• Called by the Panorama _cu routines. Returns fPanorama. Can only be called in ManuScript plugins. 
 
ViewAnnotations_cu(toggle/on/off) 
ViewAttachmentLines_cu(toggle/on/off) 
ViewBarNumbers_cu(toggle/on/off 
ViewComments_cu(toggle/on/off) 
ViewHandles_cu(toggle/on/off) 
ViewHiddenObjects_cu(toggle/on/off) 
ViewLayoutMarks_cu(toggle/on/off) 
ViewPageMargins_cu(toggle/on/off) 
ViewPlaybackLine_cu(toggle/on/off) 
ViewReplayMarker_cu(toggle/on/off) 
ViewHighlights_cu(toggle/on/off) 

• Allows a plugin to set the appropriate View Invisible setting to toggle, on, or off. Edit the parameter to “on” or “off”. Leaving 
it as it is will toggle the setting. The return value for these routines is True or False, reflecting the state of the Invisibles 
setting after the toggle/on/off operation is done. 

• If Hide All Invisibles is active, these commands will have no effects and will always return False. Run 
HideAllInvisibles_Show_cu(). 
 

ViewInvisibles_Full(name, param) 

• Called by the View… methods above. The return value is True or False, reflecting the state of the Invisibles setting after the 
toggle/on/off operation is done. Can only be called in ManuScript plugins. 

 

Horizontal (X) and Vertical (Y) Offset commands 
 
These commands have placeholder parameters, and any parameter can be edited with Edit Command.  The 
placeholder parameters for the commands in this category will need to be changed to a valid number of spaces, 
which need not be a whole number. The “_Full” versions of these commands are only used in ManuScript 
plugins, not in Command Macros or Command Plugins. 
 
SetXOffsets_Left_Absolute_cu (xOffsetInSpaces)  
SetXOffsets_Left_Relative_cu (xOffsetInSpaces)  
SetXOffsets_Right_Absolute_cu (xOffsetInSpaces)  
SetXOffsets_Right_Relative_cu (xOffsetInSpaces)  
 
SetXOffsets_Full (score, selection, xOffsetInSpaces, iActionForLines, fRight, fRelative)  (Can only be called in ManuScript 
plugins.) 

• These are similar to using the X offsets in the Inspector on a selection of objects. iActionForLines: 0 = move both ends, 1 =  
move left end only, 2 = move right end only. The non-full routines will move both ends of a line. 

• Relative commands add the offset to the current offset of the selected objects. Absolute commands set the object offsets to that 
value. 

• These expect a positive number. You can put in a negative number and it will make the offset reverse direction 
o Left will go right, right will go left 

 
SetYOffsets_Down_Absolute_cu (yOffsetInSpaces)  
SetYOffsets_Down_Relative_cu (yOffsetInSpaces)  
SetYOffsets_Up_Absolute_cu (yOffsetInSpaces)  
SetYOffsets_Up_Relative_cu (yOffsetInSpaces)  
 
SetYOffsets_Full (score, selection, yOffsetInSpaces, iActionForLines, fRight, fRelative) (Can only be called in ManuScript 
plugins.) 



23 
 

• These are similar to using the  Y offsets in the Inspector on a selection of objects. iActionForLines: 0 = move both ends, 1 =  
move left end only, 2 = move right end only. The non-full routines will move both ends of a line. 

• Relative commands add the offset to the current offset of the selected objects. Absolute commands set the object offsets to that 
value. 

• These expect a positive number. You can put in a negative number and it will make the offset reverse direction 
o Up will go down, down will go up 

 

User Input Commands 
 
You will need to use these in a plugin where you can examine and manipulate the data they return. Other than 
MessageBox_cu they will not be useful in Command macros, since there is no way to access the return 
values. See the Exit Plugins commands for examples of commands that ask for input and respond based on at 
least Yes/No responses.  Here is what the user dialog (as generated by SetUserInput_Heading_cu and 
GetUserInput_cu) looks like. The OK/ Cancel buttons are offscreen. The user types, then types Enter to OK 
or Esc to exit. Pretty compact. 
 

 
 
These commands have placeholder parameters, and any parameter can be edited with Edit Command.  The 
placeholder parameters for the commands in this category will need to be changed to appropriate text strings. 
The “_Full” versions of these commands are only used in ManuScript plugins, not in Command Macros or 
Command Plugins. 
 
GetUserInput_cu (strVariableName)  

• This puts up a small dialog box with an edit box that the user can type into. The text that will appear in the edit box when the 
dialog is displayed will be what was used the last time, or empty.  
 

GetUserInput_Full (score, selection, strHeading, strVariableName)  

• GetUserInput_Full lets you specify some text to appear at the top of the dialog. There is not much room for the text, so 
check before publishing anything to be sure the text will fit.  

• GetUserInput_Full creates a parameter variable whose name is what is passed in for strVariableName, and whose value is 
the text entered into the edit box. See the section on parameter variables for details. 

• Can only be called in ManuScript plugins. 
 

MessageBox_cu(strMsg); 
ok = MessageBoxYesNo_cu(strMsgYesNo);  // ok will be True for Yes, False for No 

• Puts up a message box with the string displayed. 

• Yes/No value can only be seen in plugin code 

• See also ContinueIfSelection_Empty_cu (strMsgYesNoContinue)  
MessageBoxYesNo_Exit_No_cu(strMsgYesNo) 
MessageBoxYesNo_Exit_Yes_cu(strMsgYesNo) 

• Puts up a message box with the string displayed. 

• The No version will exit the plugin if the user replies No. 

• The Yes version will exit the plugin if the user replies Yes. 
SetUserInput_Heading_cu(strHeading) 

• Sets the heading text for the dialog brought up by GetUserInput_cu 

Mute/Unmute Commands 
 
MuteSelectedNotes_cu ()  
UnmuteSelectedNotes_cu ()  
 
MuteAnySelectedObjects_cu() 
UnmuteAnySelectedObjects_cu() 
 
MuteOrUnmuteSelectedNotes_cu(1,1,1,1,1,1,1,1) 
MuteOrUnmuteAnySelectedObjects_cu(1,1,1,1,1,1,1,1) 
 
SetPlayOnPass_Full(score, selection, fNoteRestOnly, arrPassOnOff)) 

• Mutes or unmutes selected notes or objects by setting all Play On Pass passes on or off. 
• The MuteOrUnmute routines take a parameter string of 8 fields of 0 or 1 separated by commas. 



24 
 

• Can only be called in ManuScript plugins. 

 

“Other” Commands 
 
Most of these commands have placeholder parameters, and any parameter can be edited with Edit 
Command.  The placeholder parameters for the commands in this category will often need to be changed. The 
“_Full” versions of these commands are only used in ManuScript plugins, not in Command Macros or 
Command Plugins. 
 
ApplyNamedColor_cu(colorName) 

• Applies color to selected objects. colorName can only be one of these color names (without quotes): "Black", "Blue", "Brown", 
"Dark blue", "Dark cyan", "Dark green", "Dark magenta", "Dark salmon", "Gray", "Green", "Indigo", "Light blue", "Light 
green", "Light slate gray", "Medium blue", "Medium green", "Olive", "Orange", "Orange red", "Pink", "Purple", "Red", "Tan", 
"Violet", "Yellow", or "White". 

• The spelling of the colors names must be exact matches, though case differences are ignored. 

• To remove coloring,  set the color to Black. 

• The plugin Apply Named Colors (version 01.12.00 or later) must be installed to use this command. 
 
ApplyNamedColor_List_cu() 

• Applies color to selected objects, but it will put up a small dialog with a list of color names.  

• Choose a color name from the list, the press Enter to accept the color, or Esc to cancel. 
 
ExportPDF_cu() 

• Exports the current score or part as PDF 
ExportPDF_DateTime_cu() 

• Exports the current score or part as PDF and appends the current date and time to the file name. 
ExportPDF_FullScore_cu() 

• Exports the full score of the current score as PDF 
ExportPDF_FullScore_DateTime_cu() 

• Exports the full score of the current score as PDF and appends the current date and time to the file name.  
•  

ExportPDF_Full(score, selection, iPart) 

• Saves in the same folder as the score. Can only be called in ManuScript plugins. 
 

Esc_cu 

• A synonym for Sibelius.Execute("cancel_stop_selectnone"); It cancels a selection, among other things. 
• This is no longer available as of May 2022. Call the Sibelius command  “Cancel/Stop/Select None / 

"cancel_stop_selectnone" directly. 
 
Filter_Duration_Notes_Equal_cu(e) 
Filter_Duration_Notes_Greater_cu(q) 
Filter_Duration_Notes_GreaterEqual_cu(x) 
Filter_Duration_Notes_Less_cu(h.) 
Filter_Duration_Notes_LessEqual_cu(w..) 

• These filter notes or chords (not rests) that are of the desired duration. The duration must be specified as 

• w = whole, h = half, q = quarter, e = 8th, x = 16th, y = 32nd, optionally followed by 1 to 3 periods (rhythm dots).  

• This calls the plugin Filter Notes By Duration, which must be installed for these commands to work. 
 

MagneticLayout_Default_cu() 
MagneticLayout_Off_cu() 
MagneticLayout_On_cu() 
 
MagneticLayout_Full(score, selection, valueML) (Can only be called in ManuScript plugins.) 

• Sets Magnetic Layout to On, Off, or Default for all selected objects. 

• These are mostly duplicates of the Sibelius Magnetic Layout commands:  Turn off Magnetic Layout for item, Turn on 
Magnetic Layout for item, and Use default Magnetic Layout settings.. 

• You can use MagneticLayout_Full, using the special value of -1 for valueML to find the current Magnetic Layout state of the 
first selected object. 

• There is no sure way to toggle the settings, because if an object is set to Default, it can be On or Off, depending on the object. 

• This will be applied to Notes as well as other objects (as Sibelius does in Layout>Magnetic Layout) . The setting has no 
practical effect on notes, but be aware that it happens. You may want to filter to deselect notes. 

• A user could write a plugin to toggle, based on their own needs, for example, setting Off to On, and On or Default to Off, but 
that is not reliable enough in general for me to provide that function. 

 
MessageBox_cu(strMsg); 



25 
 

ok = MessageBoxYesNo_cu(strMsgYesNo);  // ok will be True for Yes, False for No 

• Puts up a message box with the string displayed. 

• Yes/No value can only be seen in plugin code 

• See also ContinueIfSelection_Empty_cu (strMsgYesNoContinue) 
 
RunMacro_cu(Valid dat file name or path plus file name) 
 
RunMacro_Full(score, selection,Valid dat file name or path plus file name) 

• Runs a Command Macro given a valid macro .dat file name 

• The file name can either be a full path name, including the .dat extension, or just the file name with the .dat extension. 

• If there is no path, the plugin will look for the file in the default Command Macro folder, which is the “Execute_Commands” 
subfolder of the default Sibelius Scores folder.This is the only location the command will search in. 

• The .dat file will be validated and run, as would be done in the plugin Run Command Macro. 
 
RunPluginEntry_cu(strParameters) 
 
RunPluginEntry_Full(score, selection, strParameters)  (Can only be called in ManuScript plugins.) 

• Runs an entry point within an installed plugin, passing parameters through a dictionary object. 
• This is a universal Child plugin for any plugin method that is set up to receive text parameters through a Dictionary of named 

fields. 

• strParameters is a special string with comma separated fields. The format is: 
o <plugin command id>,<plugin method name>,strName1, strVal1, strName2, strVal2, … strNamen, strValn 
o DANGER!! strName and strVal entry may not contain commas. Use Notes and Chords and Rests, not Notes, Chords, 

and Rests, as I once did. Messes up the parser. There can be no single or double quotes either. 

• Here is an example of a call into the API_ProcessSelection method in Filter Notes By Duration: 
o RunPluginEntry_cu(FilterNotesByDuration.plg, API_ProcessSelection, str_Duration, q, str_Operator, =, 

str_Type, Notes and chords only) 

• See the document Parent/Child plugins for more details. 
 
RunPluginHideDialog_cu (strPluginMenuName)  
RunPluginShowDialog_cu (strPluginMenuName)  
 
RunPluginHideDialog_Full (score, strPluginMenuNameCmdOrId, fHideDialog, strMessagePluginUnavailable)  

• Runs the named plugin, and requests it to show or not show its dialog 

• Only plugins that have been updated to support this feature will hide the dialog 

• Unsupported plugins will be run as usual. 
• Can only be called in ManuScript plugins. 

 
GetDataForWildcard_cu(strWildcardName) 

• Gets the current value stored in the specified Score Info field 
SetDataForWildcard_cu(strWildcardName, strText) 

• Sets the current value of the specified Score Info field to the text that follows the comma in the parameter list 
 

DataForWildcard_Full (score, selection, fSetValue, strParameters, strWildcardName, strText) 

• Called by GetDataForWildcard and GetDataForWildcard 

• <strText> is any text that follows the comma. Avoid most punctuation, and never use single quotes, double quotes, or 
parentheses 

• < strWildcardName> must be one of these names (the letters can be upper cause or lower case). To get the list of acceptable 
names in real time, run the command with a bogus wildcard name, such as ?, and the error message will show the available 
names. 

 
"Arranger" 
"Artist" 
"Composer" 
"ComposerDates" 
"Copyist" 
"Copyright" 
"Dedication" 
"Lyricist" 
"MoreInfo" 
"OpusNumber" 
"PartName" 
"Publisher" 
"Subtitle" 
"Title" 
"YearOfComposition" 

 



26 
 

TracePlugins_HideableDialog_cu() 

• Traces the names of any plugins you have installed that support RunPluginHideDialog_cu. 
TracePluginConditionNames_cu() 

• Traces the names of all plugin conditions supported by the plugin Evaluate Plugin Conditions. 
Trace_cu(Write to trace window) 

• Writes the parameter string to the Plugin Trace Window 
 

SetScoreRedraw_False_cu ()  
SetScoreRedraw_True_cu ()  
 
SetScoreRedraw_Full (score, fRedraw). 

• If score.Redraw is not set True, any actions taken by a plugin or command that change the score will cause the score to be redrawn 
in real time, which greatly slows the process. Normally this is handled in plugins. 

• Can only be called in ManuScript plugins. 
 

ShowCmdutilsVersion_cu() 

• Traces the current version of cmdutils.plg that is being called. 
SplitBarRestsAtBeat_cu(2.0) 

• Splits selected bar rests at the specific beat position (beat size depends on the time signature). Split at beat 1 to convert a bar 
rest into one or more normal rests. This will process hidden staves. 

SplitBarRestsForPassage_cu() 

• Splits bar rests enclosed by a partial-bar passage selection so that any portions of the bar rests in the first or last selected bar 
that are out of the selection will be split off as “normal” rests. This will process hidden staves. 

 

 

Alphabetical full list of commands called from Execute Commands (as of February 28, 2025) 
 
This list was created by choosing the Cmdutils categories in the plugin Execute Commands, and clicking 
on Trace. I then copied the contents of the Trace window to a file. These are the commands that can be 
executed in Execute Commands. 
 
The text strings used as arguments in some commands are placeholders, which will often bneed to be changed 
to be an appropriate value using Edit Command or a text editor. When these commands are called directly in a 
ManuScript plugin, the text in between () will need to be enclosed in double quotes, and the last closing 
parenthesis would be followed by a semicolon. 
 
As an example, the command shown as AddSelect_Line_cu(line.staff.arrow.black.right) 
would have to be changed in ManuScript plugin code to be 
cmdutils.AddSelect_Line_cu(“line.staff.arrow.black.right”); 
 

This is done automatically by the New Plugin mechanism in Execute Commands. 
 
The command definitions in the file cmdutils.plg are the final authority on what the parameters should be. 
This list was correct at the time of writing (February 28, 2025). 
 

Commands in category: Cmdutils Add Objects 
 
Add_Bars_At_End_cu(1) 
 
Add_Line_8va_cu() 
Add_Line_Box_cu() 
 
Add_Line_cu(line.staff.arrow.black.right) 
 
Add_Line_Bracket_Vertical_Left_cu() 
Add_Line_Bracket_Vertical_Right_cu() 
Add_Line_Ending_First_cu() 
Add_Line_Ending_Second_cu() 
Add_Line_Hairpin_Crescendo_cu() 
Add_Line_Hairpin_Diminuendo_cu() 
Add_Line_Plain_cu() 
Add_Line_Slur_cu() 



27 
 

Add_Line_Trill_cu() 
Add_Line_Vertical_cu() 
 
Add_StaffSymbol_cu(Choral divide arrow) 
Add_SystemSymbol_cu(Coda) 
 
Add_Text_cu(text.staff.expression,legato) 
Add_Text_Dynamics_cu(mf) 
Add_Text_Expression_cu(pizz) 
Add_Text_Technique_cu(legato) 
 
AddSelect_Line_8va_cu() 
AddSelect_Line_Box_cu() 
 
AddSelect_Line_cu(line.staff.arrow.black.right) 
 
AddSelect_Line_Bracket_Vertical_Left_cu() 
AddSelect_Line_Bracket_Vertical_Right_cu() 
AddSelect_Line_Ending_First_cu() 
AddSelect_Line_Ending_Second_cu() 
AddSelect_Line_Hairpin_Crescendo_cu() 
AddSelect_Line_Hairpin_Diminuendo_cu() 
AddSelect_Line_Plain_cu() 
AddSelect_Line_Slur_cu() 
AddSelect_Line_Trill_cu() 
AddSelect_Line_Vertical_cu() 
 
AddSelect_StaffSymbol_cu(Choral divide arrow) 
AddSelect_SystemSymbol_cu(Coda) 
 
AddSelect_Text_cu(text.staff.expression,legato) 
AddSelect_Text_Dynamics_cu(mf) 
AddSelect_Text_Expression_cu(pizz) 
AddSelect_Text_Technique_cu(legato) 
 
ApplyNoteheadStyle_cu(2) 
 
TextStyleDefaultForCommands _cu(text.staff.technique) 
 
Trace_LineStyleIdFromName_cu(Glissando (wavy)) 
Trace_NoteStyleIndexFromName_cu(Diamond) 
Trace_Object_Type_Name_StyleOrIndex_cu() 
Trace_SymbolIndexFromName_cu(Mordent) 
Trace_TextStyleIdFromName_cu(Technique) 
 

Commands in category: Cmdutils Add lntervals 
 
AddInterval_Down_Augmented_cu(5) 
AddInterval_Down_Diatonic_cu(2) 
AddInterval_Down_Diminished_cu(5) 
AddInterval_Down_DoubleAugmented_cu(2) 
AddInterval_Down_DoubleDiminished_cu(2) 
AddInterval_Down_Major_cu(3) 
AddInterval_Down_Minor_cu(3) 
AddInterval_Down_Perfect_cu(8) 
AddInterval_Down_Semitones_cu(1) 
 
AddInterval_Up_Augmented_cu(5) 
AddInterval_Up_Diatonic_cu(2) 
AddInterval_Up_Diminished_cu(5) 
AddInterval_Up_DoubleAugmented_cu(4) 
AddInterval_Up_DoubleDiminished_cu(4) 
AddInterval_Up_Major_cu(3) 
AddInterval_Up_Minor_cu(3) 
AddInterval_Up_Perfect_cu(8) 
AddInterval_Up_Semitones_cu(1) 
 



28 
 

Commands in category: Cmdutils Selection 
 
ContractSelection_Down_cu() 
ContractSelection_Left_cu() 
ContractSelection_Right_cu() 
ContractSelection_Up_cu() 
 
ContractSelection_Visible_Down_cu() 
ContractSelection_Visible_Up_cu() 
 
Copy_cu() 
Cut_cu() 
 
DeleteSelection_cu() 
Deselect_Hidden_Staves_cu() 
 
ExtendSelection_Down_cu() 
ExtendSelection_DownTo_BottomStaff_cu() 
 
ExtendSelection_FullBar_Left_cu() 
ExtendSelection_FullBar_LeftRight_cu() 
ExtendSelection_FullBar_Right_cu() 
ExtendSelection_Left_cu() 
 
ExtendSelection_ObjTo_Bar_cu() 
ExtendSelection_ObjTo_Page_cu() 
ExtendSelection_ObjTo_Staff_cu() 
ExtendSelection_ObjTo_System_cu() 
 
ExtendSelection_Pages_cu() 
ExtendSelection_Right_cu() 
ExtendSelection_Up_cu() 
ExtendSelection_UpTo_TopStaff_cu() 
ExtendSelection_Visible_Down_cu() 
ExtendSelection_Visible_Up_cu() 
 
FilterAllSelected_cu() 
FilterDynamicsText_cu() 
FilterHighlights_cu() 
 
GoToFirstBar_cu() 
GoToFirstScoreObject_cu() 
GoToFirstScoreObject_SystemOK_cu() 
GoToLastBar_cu() 
GoToLastScoreObject_cu() 
GoToLastScoreObject_SystemOK_cu() 
 
GoToNextBar_cu() 
GoToNextPage_cu() 
GoToPreviousBar_cu() 
GoToPreviousPage_cu() 
 
MakePassageSelection_cu() 
MakePassageSelection_AllowSystemObjects_cu ()  
MakeSystemPassageSelection_cu() 
 
Paste_cu() 
 
RestoreSelection_cu() 
SaveSelection_cu() 
 
Select_All_NonPassage_cu() 
Select_All_NonPassage_System_cu() 
Select_All_Passage_cu() 
Select_All_Passage_System_cu() 
 
Select_First_NoteChordNoRest_cu() 
Select_First_NoteChordNoRest_EachStaff_cu() 



29 
 

Select_First_NoteChordRest_cu() 
Select_First_NoteChordRest_EachStaff_cu() 
Select_First_Object_cu() 
Select_First_Object_EachStaff_cu() 
Select_First_Object_SystemOK_cu() 
 
Select_Last_NoteChordNoRest_cu() 
Select_Last_NoteChordNoRest_EachStaff_cu() 
Select_Last_NoteChordRest_cu() 
Select_Last_NoteChordRest_EachStaff_cu() 
Select_Last_Object_cu() 
Select_Last_Object_EachStaff_cu() 
Select_Last_Object_SystemOK_cu() 

Select_None_cu() 
 
ShiftSelectionNextBar_cu() 
ShiftSelectionPreviousBar_cu() 
ShiftSelectionUpOrDownOneStaff_cu(strUpOrDown) 
ShiftSelectionUpDownOneStaff_Visible_cu(strUpDown) 
 
TraceSelection_cu() 
 

Commands in category: Cmdutils Exit Plugin 
 
ContinueIfSelection_Empty_cu(strMsgExit)  
ContinueIfSelection_Empty_YesNo_cu(strMsgYesNoContinue) 
ContinueIfSelection_NotEmpty_cu(strMsgExit) 
ContinueIfSelection_NotEmpty_YesNo_cu(strMsgYesNoContinue) 
 
ExitIfConditionFalse_cu(tuplets_selected,The selection does not contain tuplets. This plugin will now exit.) 
ExitIfConditionTrue_cu(tuplets_selected,The selection contains tuplets. This plugin will now exit.) 
 
ExitIfPlugin_Unavailable_cu(Resize Bar) 
 
ExitIfSelection_Avoid_BottomStaff_cu(The selection may not include the bottom staff in the score. This plugin will now exit.) 
ExitIfSelection_Avoid_FirstBar_cu(The selection may not include the first bar in the score. This plugin will now exit.) 
ExitIfSelection_Avoid_GrandStaff_Bottom_cu(The bottom staff of the selection may not be the bottom staff of a multi-staff 
instrument. This plugin will now exit.) 
ExitIfSelection_Avoid_GrandStaff_Top_cu(The top staff of the selection may not be the top staff of a multi-staff instrument. 
This plugin will now exit.) 
ExitIfSelection_Avoid_LastBar_cu(The selection may not include the last bar in the score. This plugin will now exit.) 
ExitIfSelection_Avoid_TopStaff_cu(The selection may not include the top staff in the score. This plugin will now exit.) 
 
ExitIfSelection_Empty_cu(Nothing is selected. This plugin will now exit.) 
 
ExitIfSelection_Needs_FullSelect_cu(The selection must have all bars fully selected. This plugin will now exit.) 
ExitIfSelection_Needs_GrandStaff_All_cu(The selection must include all the staves of a multi-staff instrument, including 
ossias. This plugin will now exit.) 
ExitIfSelection_Needs_GrandStaff_Any_cu(The selection must include only staves of a single multi-staff instrument, 
including ossias. This plugin will now exit.) 
ExitIfSelection_Needs_OneStaff_cu(The selection must include only a single staff. This plugin will now exit.) 
 
ExitIfSelection_NotPassage_cu(A passage selection is required. This plugin will now exit.) 
 
ExitIfSibeliusVersion_LessThan_cu(SibeliusVersionNumber) 
 
ExitOrAll_Selection_Empty_cu(Nothing is selected. Reply Yes to select all and continue, or No to exit.) 
ExitOrAll_Selection_NotPassage_cu(A passage selection is required. Reply Yes to select all and continue, or No to exit.) 
 
ExitPlugin_cu() 
 
MessageBoxYesNo_Exit_No_cu(Choose Yes to exit this plugin or macro) 
MessageBoxYesNo_Exit_Yes_cu(Choose Yes to exit this plugin or macro) 
 
RunCommand1IfConditionFalseElseCommand2_cu(notes_selected,MessageBox_cu(Command1 was 
run),MessageBox_cu(Command2 was run),trace_no) 
 



30 
 

RunCommand1IfConditionTrueElseCommand2_cu(notes_selected,MessageBox_cu(Command1 was 
run),MessageBox_cu(Command2 was run),trace_no) 
 
RunCommandAndExitIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no) 
RunCommandAndExitIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no) 
 
RunCommandIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run),trace_no) 
RunCommandIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run),trace_no) 
 

Commands in category: Cmdutils Text Format 
 
BracketText_cu()  
BracketText_ChooseBrackets_cu([,]) 
 
SetTextCase_Lower_cu() 
SetTextCase_ToggleCase_cu() 
SetTextCase_Upper_cu() 
SetTextCase_WordInitialUpper_cu() 
SetTextFormat_Bold_cu() 
SetTextFormat_BoldItalic_cu() 
SetTextFormat_Italic_cu() 
SetTextFormat_Normal_cu() 
 
SetTextFormat_Position_Normal_cu() 
SetTextFormat_Position_Subscript_cu() 
SetTextFormat_Position_Superscript_cu() 
 
SetTextFormat_Underlined_cu() 
 

Commands in category: Cmdutils Transpose Intervals 
 
TransposeInterval_Down_Augmented_cu(5,yes,no) 
TransposeInterval_Down_Diatonic_cu(2,yes,no) 
TransposeInterval_Down_Diminished_cu(5,yes,no) 
TransposeInterval_Down_DoubleAugmented_cu(4,yes,no) 
TransposeInterval_Down_DoubleDiminished_cu(4,yes,no) 
TransposeInterval_Down_Major_cu(3,yes,no) 
TransposeInterval_Down_Minor_cu(3,yes,no) 
TransposeInterval_Down_Perfect_cu(8,yes,no) 
TransposeInterval_Up_Augmented_cu(5,yes,no) 
TransposeInterval_Up_Diatonic_cu(2,yes,no) 
TransposeInterval_Up_Diminished_cu(5,yes,no) 
TransposeInterval_Up_DoubleAugmented_cu(4,yes,no) 
TransposeInterval_Up_DoubleDiminished_cu(4,yes,no) 
TransposeInterval_Up_Major_cu(3,yes,no) 
TransposeInterval_Up_Minor_cu(3,yes,no) 
TransposeInterval_Up_Perfect_cu(8,yes,no) 
 
 

Commands in category: Cmdutils View  
 
HideAllInvisibles_Hide_cu() 
HideAllInvisibles_Restore_Setting_cu() 
HideAllInvisibles_Show_cu() 
HideAllInvisibles_Store_Current_Setting_cu() 
HideAllInvisibles_Toggle_cu() 
 
PanoramaOff_cu() 
PanoramaOn_cu() 

 
ViewAnnotations_cu(toggle/on/off) 
ViewAttachmentLines_cu(toggle/on/off) 
ViewBarNumbers_cu(toggle/on/off 
ViewComments_cu(toggle/on/off) 
ViewHandles_cu(toggle/on/off) 
ViewHiddenObjects_cu(toggle/on/off) 
ViewLayoutMarks_cu(toggle/on/off) 



31 
 

ViewPageMargins_cu(toggle/on/off) 
ViewPlaybackLine_cu(toggle/on/off) 
ViewReplayMarker_cu(toggle/on/off) 
ViewHighlights_cu(toggle/on/off) 

 

Commands in category: Cmdutils X Y Offsets 
 
SetXOffsets_Left_Absolute_cu(1) 
SetXOffsets_Left_Relative_cu(1) 
SetXOffsets_Right_Absolute_cu(1) 
SetXOffsets_Right_Relative_cu(1) 
 
SetYOffsets_Down_Absolute_cu(1) 
SetYOffsets_Down_Relative_cu(1) 
SetYOffsets_Up_Absolute_cu(1) 
SetYOffsets_Up_Relative_cu(1) 
 

Commands in category: Cmdutils Other 
 
ApplyNamedColor_cu(Red) 
ApplyNamedColor_List_cu() 
 
ExportPDF_cu() 
ExportPDF_DateTime_cu() 
ExportPDF_FullScore_cu() 
ExportPDF_FullScore_DateTime_cu() 
 
Filter_Duration_Notes_Equal_cu(e) 
Filter_Duration_Notes_Greater_cu(q) 
Filter_Duration_Notes_GreaterEqual_cu(x) 
Filter_Duration_Notes_Less_cu(h.) 
Filter_Duration_Notes_LessEqual_cu(w..) 
 
GetUserInput_cu(strVariableName) 
 
GetDataForWildcard_cu(strWildcardName) 

 
MagneticLayout_Default_cu() 
MagneticLayout_Off_cu() 
MagneticLayout_On_cu() 
 
MessageBox_cu(You need to know this) 
MessageBoxYesNo_cu(Choose Yes or No) 
 
MuteAnySelectedObjects_cu() 
MuteOrUnmuteAnySelectedObjects_cu(1,1,1,1,1,1,1,1) 
MuteOrUnmuteSelectedNotes_cu(1,1,1,1,1,1,1,1) 
MuteSelectedNotes_cu() 
 
RunMacro_cu(Valid dat file name or path plus file name) 
 
RunPluginEntry_cu(strParameters) 
RunPluginHideDialog_cu(Valid Plugin Name Or Id) 
RunPluginShowDialog_cu (Valid Plugin Name Or Id) 
 
SetDataForWildcard_cu(strWildcardName, strText) 
 
SetScoreRedraw_False_cu() 
SetScoreRedraw_True_cu() 
 
SetUserInput_Heading_cu(Type into the edit box, then type Enter for OK or Esc for Cancel.) 
 
ShowCmdutilsVersion_cu() 
 
SplitBarRestsAtBeat_cu(2.0) 
SplitBarRestsForPassage_cu() 
 



32 
 

Trace_cu(Write to trace window) 
TracePluginConditionNames_cu() 
TracePlugins_HideableDialog_cu 
 
UnmuteAnySelectedObjects_cu() 
UnmuteSelectedNotes_cu() 
 
  



33 
 

Making plugins that use a single call to a cmdutils command 
 
You can include calls to cmdutils commands anywhere in your plugin or macro code. You can write a plugin 
that includes only one or more cmdutils commands calls, and then use that plugin in your own Command 
Plugins or Macros that you create using Execute Commands. 
 
The easiest way to do this is to add a _cu command to the Command List in Execute Commands and use 
New Plugin… to generate and install a new plugin file. You will need to close and restart Sibelius before you 
can use the plugin. 
 
Now you can test the plugin. Make a selection in the score, and use Command Search on the Ribbon to find 
the name of your plugin and run it, or bring up Execute Commands and run the plugin from there (use 
Execute Current Command). 
 
Once it works as expected (which often takes several tries), you can use it like any other plugin as a command 
in Execute Commands. 
 
If you edit a generated plugin you will find that all the commands you wrote are in the method 
ProcessScore(score). 
 

Debugging aids 

 
There are not many, but adding comments to a macro sequence can help you remember why you did things. 
 
You can also use Edit Command… to edit a command temporarily and add “//” to the start of the command, 
which will turn it into a comment. That way you can see what happens when that specific instruction is 
removed. 
 
I often add an ExitPlugin_cu command to my Command List when debugging. Start it at the bottom of the 
list where it will really have no effect, then slide it up to a place where you want the macro to stop, so you can 
examine the score at that point. Change its vertical position as you like, and leave it at the bottom, delete it, or 
comment it out when you are finished debugging. 
 
Trace_cu will write text to the plugin trace window, and you can write information at various points in the 
sequence to show how far you are getting. ExitPlugin_cu can be very useful: Add an ExitPlugin_cu 
command to a sequence, and slide it up or down so that only parts of the plugin run, and you can effectively 
halt partway through. 
 
You can use MessageBox_cu or MessageBoxYesNo_cu or other User Input commands to send or 
receive information to or from the user of the macro. You can only access the Yes/No return value in 
ManuScript code. 
 
MessageBoxYesNo_Exit_No_cu and MessageBoxYesNo_Exit_Yes_cu can be added for testing. It 
will allow you to stop the plugin if the user replies either Yes or No. 
 

Sharing Command Macro and Command Plugins Files 
 
Command macros are stored in the Execute_Commands subfolder of your default Scores folder (as set up 
in File>Preferences>Saving and Exporting, or in one of that folder’s subfolders. Find them there (they 
are Text files with .dat extensions), and send copies away. The recipient will need to have create an 
Execute_Commands subfolder in their default Scores folder, and copy the .dat files to that subfolder. 
 
Each subfolder in Execute_Commands is treated as an independent group in Run Command Macros, so 
you can have any number of working sets of macros, each with its own set of shortcuts. 
 



34 
 

To share a Command Plugin, you will need to find the .plg file in the plugin folder it was saved in, and send it. 
In my experience if you are emailing such files it is useful to zip the file first, or the email system may reject it. 
The recipient will need to copy it into an appropriate plugin subfolder, or use the downloadable plugin Install 
New Plugin to move it to an appropriate location. They will need to close and restart Sibelius before that 
plugin can be used, since Sibelius loads all plugins at startup. 
 

Tip: use Command Macro format (.dat files) for your “source code” 
 
I have found that it is often best to  export a sequence of commands to a Command Macro (dat) file even if 
you are planning to generate a plugin from them.  If you want a plugin, you can import the dat file and use that 
to produce a New Plugin. You can easily trade dat files, and those can be read in without needing to restart. 
The receiving user can then generate their own plugin if they so desire.  
 
Keeping the data as a Command Macro means it is easy to modify it within Execute Commands, whereas 
once you create a plugin, there is no easy way to get that data back into Execute Commands. I think of the 
Command Macro File as the main source file, and the plugin is derived from that.   
 
Once you need to change the plugin code in ManuScript, though, you are out of the realm of Execute 
Commands, and you will need to edit the code in a text editor or the Sibelius plugin editor (I recommend 
using the Sibelius plugin editor). I am still trying to get  useful code that can be made entirely as sequences of 
commands, and in that case being able to go easily in and out of Execute Commands is a good thing. 

 
  

http://www.sibelius.com/download/plugins/index.html?plugin=298
http://www.sibelius.com/download/plugins/index.html?plugin=298


35 
 

A sample plugin that uses cmdutils calls: Add Line And Dynamic Text 
 
This plugin adds a “p” in a dynamics style , then a hairpin that extends for the duration of the selection, and 
finally an “f” dynamic text. The biggest problem was  trying to figure out a good way to separate the 3 objects so 
they were close enough  and not too far apart. This version was the best compromise I came up with. It uses 
several of the cmdutils routines as well as regular commands and plugins. 
 
This command could be called by another  plugin. If this routine were generated in Execute Commands by 
New Plugin, this would be the code in the ProcessScore() command. 
 
This example was created in Execute Commands, and all the lines of code were produced by adding 
commands to the Command List. The command Add_Text_Dynamics_cu(f) was edited with Edit Command to 
change the default text from mf to p or f. 
 
I present it first as just a sequence of commands, as produced in Execute Commands, and stored in a 
Command Macro file using Export List,  then as a plugin with no comments, and then I provide an 
annotated version of the plugin that explains what is going on at each step. 
 

Command sequence of Add Line And Dynamic Text 
 
Any commands with (Plug-in nnn) or (xxx)  or .plg suffixes are plugins. The commands with _cu suffixes call 
commands in cmdutils.plg 
 
// Add Line And Dynamic Text 
// by Bob Zawalich and Ilkay Bora Oder 
// 
// Add to the selection dynamics text p, then 
// a crescendo hairpin, then a dynamics f 
// 
ExitIfSelection_NotPassage_cu(A passage selection is required. This plugin will now exit.) 
SaveSelection_cu() 
Add_Line_Hairpin_Crescendo_cu() 
// Add first text at line start position and select it 
AddSelect_Text_Dynamics_cu(p) 
ExitIfSelection_Empty_cu(The Add failed, and the selection was cleared. The plugin will now exit.) 
// shift text 1 space to the left 
SetXOffsets_Left_Relative_cu(1) 
RestoreSelection_cu() 
Select_Last_Object_cu() 
Select_next_object 
Add_Text_Dynamics_cu(f) 
RestoreSelection_cu() 
ExtendSelection_Right_cu() 

 

Uncommented ProcessScore() method of Add Line And Dynamic Text plugin  
 
These lines are essentially the previous commands with added syntax so that ManuScript will run the 
commands. Parameters will be in quotes (single quotes in the file, but double quotes if you look in the Sibelius 
Plugin editor), and the commands themselves will be arguments to a cmdutils or ExecuteCommands 
routine, or for Sibelius.Execute. 
 
// Add Line And Dynamic Text 
// by Bob Zawalich and Ilkay Bora Oder 
// 
// Add to the selection dynamics text p, then 
// a crescendo hairpin, then a dynamics f 
// 
cmdutils.ExitIfSelection_NotPassage_cu('A passage selection is required. This plugin will now exit.'); 
cmdutils.SaveSelection_cu(); 
cmdutils.Add_Line_Hairpin_Crescendo_cu(); 
// Add first text at line start position and select it 



36 
 

cmdutils.AddSelect_Text_Dynamics_cu('p'); 
cmdutils.ExitIfSelection_Empty_cu('The Add failed, and the selection was cleared. The plugin will now exit.'); 
// shift text 1 space to the left 
cmdutils.SetXOffsets_Left_Relative_cu('1'); 
cmdutils.RestoreSelection_cu(); 
cmdutils.Select_Last_Object_cu(); 
Sibelius.Execute("select_next_object"); // Select next object 
cmdutils.Add_Text_Dynamics_cu('f'); 
cmdutils.RestoreSelection_cu(); 
cmdutils.ExtendSelection_Right_cu(); 
 

Cmdutils commands that take  parameters, such as ExitIfSelection_NotPassage_cu and 
ExitIfSelection_Empty_cu, are given default parameter values which will serve as a reasonable placeholder 
so that the command can be run immediately, even if it adds the wrong text.  
 
My intention is that if you generate a plugin from these commands you will be able to edit the text to your 
liking in the editor you use for plugins. You can also select the command in the Command List in Execute 
Commands and edit it with the Edit Command button, which will allow some simple text editing. In this 
example, I changed the default “mf” to “p” in Add_Select_Text_Dynamics , and changed the warning 
string for ExitIfSelection_Empty_cu using Edit Command, so all this code was written in Execute 
Commands. 
 
Several other command lines might have needed editing, but the default parameters were what I wanted 
already. 
 
 

Annotated version of Add Line And Dynamic Text’s ProcessScore() method 
 
// Add to the selection a dynamics text p, then 
// a crescendo hairpin, then a dynamics f 

 
These comments give an overview of the macro. Comments need to be on separate lines, and start with //.  
Select a command in the Command List, and use Add Comment to insert a comment into the list immediately 
above the selected command. 
 
The ExitIfSelection_NotPassage_cu  and ExitIfSelection_Empty_cu  calls are not strictly required. If 
you are running this only on your machine and you know what to expect, you can leave them out. But if you are 
going to give macros or plugins to someone else, some error checking saves your friend inconvenience and 
frustration, and lessens the chance that you will have to answer questions and debug code that is not working 
as expected. 
 
// We check for a passage selection and exit is there is none. We could probably get away with only checking for any selection, but I 
prefer to limit it further. 
 
cmdutils.ExitIfSelection_NotPassage_cu('A passage selection is required. This plugin will now exit.'); 
 
// We want to be able to reuse the original selection, so save it away here  
 
cmdutils.SaveSelection_cu(); 
 
// We add the hairpin line to the full selection. The creation might fail  and if this were to be a published plugin  
// I would probably error check this as well 
 
cmdutils.Add_Line_Hairpin_Crescendo_cu(); 
 
// The ‘p’ text goes at the start of where the line went. We both add the text and select it  
// so we can manipulate it. If that Add/Select failed, the selection will be cleared, so  we can 
// use ExitIfSelection_Empty_cu  to warn and exit the plugin 
 
cmdutils.AddSelect_Text_Dynamics_cu('p'); 
cmdutils.ExitIfSelection_Empty_cu('The Add failed, and the selection was cleared. The plugin will now exit.'); 
 



37 
 

// Adjust the new Text object, which is now selected, one space to the left to give the line a bit of room 
 
cmdutils.SetXOffsets_Left_Relative__cu('1'); 
 
// Now restore the original (hopefully passage) selection. To be able to select the following 
// object, we first call Select_Last_Object_cu() to select the last of the selected 
// objects, then we can use Select next Object to get to the Note, Rest ,or Bar Rest that follows the selection. 
 
cmdutils.RestoreSelection_cu(); 
cmdutils. Select_Last_Object_cu(); 
Sibelius.Execute('select_next_object'); 
 
// add the final text “’f’ at the location of the following object 
 
cmdutils.Add_Text_Dynamics_cu('f'); 
 
// restore the original selection, which is good to do if this will be run in a 
// sequence of commands. Finally, extend the selection to the right 
// so the f is contained in the selection 
 
cmdutils.RestoreSelection_cu(); 
cmdutils.ExtendSelection_Right_cu(); 
 


