

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 1

Using Plugins with a “New Plugin” Button
to Generate a Custom Macro or Plugin

Bob Zawalich October 23, 2022 Updated March 2, 2024

Contents

Using Plugins with a “New Plugin” Button to Generate a Custom Macro or Plugin ... 1

Contents ... 1

Introduction ... 1

Example: Add Instrument Change With Names ... 2

Required Tools .. 2

The Add Instrument Change With Names dialog.. 2

Specifying the Instrument Change .. 3

Appending the command line to the Command List in Execute Commands ... 6

What’s with the long crazy names? ..7

How a command line is constructed ..7

Components of a File or Menu name .. 8

What if I hate the long names? ... 9

How to change a File or Menu Name .. 9

How to find and run your custom plugin ...10

Introduction

The document goes into detail about using the New Plugin… button in certain plugins to generate a custom
macro or plugin that will be the equivalent of running a plugin without seeing its dialog, but with specific dialog
options selected. It will use the plugin Add Instrument Change With Names as an example of this type of
plugin. As of March 2, 2024 the published plugins that support this feature are:

• AddInstrumentChangeWithNames.plg

• AddTextToBlankPage.plg

• ChangeLivePlayback.plg

• ConvertLegacyChordSymbols.plg

• FilterNotesByBeat.plg

• FilterNotesByDuration.plg

• FilterNotesByPosition.plg

• FilterOther.plg

• FilterWithDeselect.plg

• FlipSelectedNotes.plg

• MinimumPluginParentRPE_Enabled.plg

• MovePitchesToTransposedMidLine.plg

• MulticopyDynamic.plg

• ReplaceNoteheadStyle.plg

• StoreDataForWildcard.plg

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 2

Example: Add Instrument Change With Names

The installable plugin Add Instrument Change With Names, which requires Sibelius Ultimate 2022.9 or
later, lets you create an Instrument Change while specifying non-default Full and Short Instrument
Names and Staff Names along with the Instrument Change.

This document will explain how to use the New Plugin... button to generate a plugin can be run to create the
same Instrument Change with all its properties, without needing to see and fill the plugin dialog each time.

Required Tools

To enable the New Plugin… button in any of these dialogs you will need to install the current versions of these
plugins. The minimum version number for these is shown. If using File>Plugins>Install Plug-in, try re-
installing these. If you have the most recent version published, the installer will tell you so; if not it will install
the most recent version.

• ExecuteCommands.plg (category Developers' Tools, version 01.81.44)

• cmdutils.plg (category Developers' Tools, version 01.49.60)

• NewPluginLib.plg (category Developers' Tools, version 01.20.50)

To follow along with this example you will also need to install the most recent version of

• AddInstrument ChangeWithNames.plg (category Engravers' Tools, version 01.09.50)

All these plugins, and any of the other “New Plugin” plugins can be installed using File>Plug-ins>Install
Plug-ins.

The Add Instrument Change With Names dialog

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 3

You can choose an instrument and various properties and then insert an Instrument Change.

Specifying the Instrument Change

Let’s say we have a Flute staff that uses Staff Names 1/2,

and we want to create a Piccolo Instrument Change with the same Staff Names.

Run Add Instrument Change With Names, and search for Piccolo in its list. Once found, check Use
previous staff names. This will fill the Staff Name fields with the Staff Names, if any, currently in use, and
in this example, we get “1\n\2”. Check any of the other check boxes as desired. If you were to click OK, the
Instrument Change would be added at the start of the current selection.

But let’s not do that this time.

Instead, we will use the New Plugin... button in the lower right to create a custom plugin that will recreate
this Instrument Change, with all its current dialog settings, whenever the custom plugin is run. New
Plugin… will only be enabled if the plugin NewPluginLib.plg has been properly installed.

Press New Plugin... and you will see some text being written to the plugin trace window (which you can
ignore), and this dialog box:

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 4

So what does this all mean?

The Current command line, which I also call the RunPluginEntry_cu command line, is the text that
was written to the trace window. It is a set of instructions that will reproduce the choices you made in the Add
Instrument Change With Names dialog. It is somewhat “human readable”, and one can match up the text
to the options in the dialog. There is no real need to do that unless something goes wrong, which we hope will
not happen.

This command line will be inserted into the custom plugin we are now generating, so when you run that plugin,
this command will be executed.

Right now we want to leave the Generate a new plugin… checkbox checked, and uncheck the Append the
command line… checkbox, then press OK. We will see another dialog. If you are familiar with the Execute
Commands plugin, you may recognize this as the New Plugin dialog from that plugin. We are now running
Execute Commands, and if this is the first time it has run in this Sibelius session, it will take a few seconds
to build its command lists, so please be patient.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 5

This dialog is only presented so you can see what the plugin will be named (Name (without spaces) and
Menu name), and where it will be installed (Plugin category). You can change all these things, and I will
discuss naming later, but for now let’s just accept everything on the dialog and press OK. You will see this final
dialog:

Execute Commands will also write the text in this message box to the trace window so you can find it after
the message box is closed.

The message tells you the name of the custom plugin
(AddInstrumentChangeWithNames_Y_Piccolo_1BnB2_Piccolo_PiccD_1 BnB2_Y_Y_To_CP.plg), and
where it is installed (my plugin subfolder Composing Tools). This is the same plugin folder where Add
Instrument Change With Names, the parent of this new plugin, is installed.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 6

If you go back to the plugin Add Instrument Change With Names, you can either cancel the dialog, or OK
it if you want to create the Instrument Change right now. As the message box said, you will need to close
and restart Sibelius before you will be able to access the generated plugin.

Appending the command line to the Command List in Execute Commands

There is another check box in the dialog that was brought up by the New Plugin... button, Append the
command line to the Command List in Execute Commands.

If you choose this option, the RunPluginEntry_cu command line will be added to the end of the Command
List for the Execute Commands plugin and will be present the next time Execute Commands is run in
this Sibelius session. (The Command List is cleared at the start of the next Sibelius session, so you need to act
somewhat quickly).

This can be useful if you want to combine the command line with other commands to make a larger macro or
plugin.

If the Command List has commands in it that you don’t want to include with your command line, you can run
Execute Commands before you append a new command. Save any commands you want to keep using
Export List, then either clear the entire list using the Remove all button or select specific commands and
clear them with Remove selected command.

Let’s say that the Execute Commands Command List looked like this the last time Execute Commands
was run:

If you run Execute Commands after Append the command line to the Command List in Execute
Commands was used, you would see this.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 7

You can hover your mouse over the command line to see more of it or press the Edit Command… button to
see it in a larger edit box or use Export List… to save all the commands as a macro (.dat) file. The .dat file is
really a text file, so you can open it in any convenient text editor and examine the contents of the command
line.

Export List… will turn the Command List into a macro you can run with the Run Command Macro plugin.
You can also press New Plugin… and create a plugin that will run all the commands in the Command List.

What’s with the long crazy names?

Names are important, and my goal is usually to make names that are unique and that also contain enough
information to tell something useful about the plugin being named.

Bear in mind that these plugins will not bring up a dialog when you run them, so if you want to create a plugin
and use it in the future, it is useful to choose a name that can give you some idea of what it will do.
Otherwise, you may have to just start over, or use the Plugin Editor to look inside the plugin to try to figure out
what it does.

The fields in the RunPluginEntry_cu command line and in the suggested Plugin file name and Menu
name allow one to reconstruct the settings that were used when the command line or names were created.

How a command line is constructed

The RunPluginEntry_cu command line starts with the name of the plugin to be called
(AddInstrumentChangeWithNames) followed by the name of a routine, or entry point, in the plugin that
is being called (API_ProcessSelection, in this case).

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 8

These are followed by a set of comma-separated fields. There are 2 fields per setting, the first being a name for
the control in the dialog, and the other expresses the value of that control.

Finally, all such names end with _CP (for Command Plugin). This identifies a generated plugin and helps
prevent choosing a name that will cause a plugin to call itself in an endless loop in an endless loop in an endless
loop in an endless loop….

Both the plugin file name and the Menu name start with the parent plugin name
(AddInstrumentChangeWithNames), but not the entry name, and are followed by a representation of the
values, but not the names, for each dialog control.

In the names below, in the command line, the value fields from the dialog have been marked in red. Compare
the red values fields in the command line with the corresponding fields in the file name. Periods and
backslashes and most other special characters have been stripped or replaced in the file name.

RunPluginEntry_cu(AddInstrumentChangeWithNames.plg, API_ProcessSelection,
strFullInstrumentName, Piccolo, strFullStaffName, 1\n\2, strInstrumentName, Piccolo,
strShortInstrumentName, Picc., strShortStaffName, 1\n\2, strWarningLabel, To, strfAddClef, yes,
strfShowText, yes, strfShowWarning, yes)

The Plugin (file) name will be

AddInstrumentChangeWithNames_Y_Piccolo_1BnB2_Piccolo_PiccD_1 BnB2_Y_Y_To_CP.plg

The Menu name will be

AddInstrumentChangeWithNames Y Piccolo 1BnB2 Piccolo PiccD 1 BnB2 Y Y To CP

The plugin with the New Plugin... button will automatically generate the RunPluginEntry_cu
command line for you. All you need to do is choose your dialog options and press the button.

Components of a File or Menu name

You don’t need to know the following to use these command lines, but I will explain them anyway.

In the dialog, not all controls are captured in the command line. The Search box is an example of this. Of the
controls that are captured, the list box of Instrument Names is named strInstrumentName, and its value
is Piccolo, and both these fields are in the command line. Similarly, check boxes like Add Clef (if
necessary) have a name and a value. For the command line, a checked box will have the value yes, and an
unchecked box will display no. The Add Clef checkbox has the name strAddClef and its value is yes.

The names are chosen for my convenience as a programmer rather than yours, but each control will have a
unique name that should be fairly easy to recognize when the time comes to find and run the generated plugin.
to.

The plugin name and menu name are

AddInstrumentChangeWithNames_Y_Piccolo_1BnB2_Piccolo_PiccD_1 BnB2_Y_Y_To_CP.plg

and

AddInstrumentChangeWithNames Y Piccolo 1BnB2 Piccolo PiccD 1 BnB2 Y Y To CP

 The menu name is derived from the file name with spaces added for readability. The file name has had any
special characters, like periods and backslashes, that might confuse the file system, replaced with harmless
characters, and spaces are replaced with underscores. The values yes and no are replaced by Y and N to save a

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 9

little space. Some additional replacement of characters are made so that the file name can be used by a plugin
to call this plugins.

In the file name, the original characters 1\n\2 and converted to 1BnB2; the backslashes were replaced by B.
Picc. Was replaced by PiccD. You may find many other examples of characters that were replaced for practical
reasons that leave the string unintelligible.

What if I hate the long names?

Feel free to choose a totally different naming scheme, or location.

Using this naming scheme I can generate a unique file and menu name for each combination of values in a
dialog, so when it comes time to generate the plugin you do not need to come up with a memorable and unique
name. Similarly, having the plugins installed in the same folder as the parent plugin is easy for me to program,
and to me seems to be a sensible location.

These plugins will not bring up a dialog when you run them, so if you want to create a plugin and use it in the
future, it is useful to choose a name that can give you some idea of what it will do. Otherwise, you
may have to just start over, or use the Plugin Editor to look inside the plugin to try to figure out what it does.

How to change a File or Menu Name

You can change either of the names in the New Plugin - Generate and Install New Plugin dialog:

Put the cursor into one of the edit boxes and type ctrl/cmd+a to select the entire name.

Be aware that the file and menu names need to be unique. It is easy to create duplicate plugins, and these will
not work the way you expect them to. The file and menu names should be related, so you can change only one
of the names, and use the appropriate “name from” button to generate a reasonable choice for the other
name.

These plugins will not bring up a dialog, so if you want to create a plugin and use it in the future, it is useful
to choose a name that can give you some idea of what it will do. Otherwise, you may have to just start
over, or use the Plugin Editor to look inside the plugin to try to figure out what it does.

You can change the file name of an existing plugin in the file system, but that will not change the menu name,
which appears in most of the places that run plugins, and which must also be changed.

If you really want to change the names, I recommend running the parent plugin again with the same
parameters and change the names when the plugin is being generated. If you really want to change the menu
name of a generated plugin, use File>Plug-ins>Edit Plugins while running Sibelius. Edit the plugin you
want to change and look for the Data block and find _PluginMenuName.

Double click on it and you can edit the text. The changeable text will be in double quotes. Change just the text
between the double quotes, being careful not to use any single or double quotes in your text, and be sure you
retain both double quotes, or the plugin is likely to not work, and probably will not be loaded by Sibelius the
next time it starts up.

Press OK to commit the edit of this variable, then then OK to commit to changing the plugin.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 10

How to find and run your custom plugin

When you successfully create a plugin, you will see a message box, and the message text will also be written to
the plugin trace window. You might see:

From this we can see that the file:

AddInstrumentChangeWithNames_Piccolo_1BnB2_Piccolo_PiccD_1BnB2_To_Y_Y_Y_CP.plg

will be in the plugin subfolder/category Composing Tools.

Admittedly these long names (both the plugin file name and its menu name) seem to be awkward to deal with,
but in fact, most of the ways you can run a plugin will handle the long names pretty well. Here are some
examples.

Command Search, which uses the menu name for its key, works well with these names, as shown below.

You could assign a shortcut to run your plugin in File>Preferences>Keyboard Shortcuts. The name will
be cut off in the listbox, but if you hover the mouse over an entry, the full name will appear in a key tip:

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS
DOCUMENTS\PARENT-CHILD PLUGINS\USING PLUGINS WITH A NEW PLUGIN
BUTTON TO GENERATE PLUGINS.DOCX PAGE 11

You can run plugins with another plugin like Run Plugins By Name, which has room for long names.

Even plugin menus seem to be ok with long names.

You may never need all this information, but if something goes wrong, you may find it to be helpful. May
nothing ever go wrong!

