

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
1 SEPTEMBER 12, 2024

The “If Condition” Commands in cmdutils and Execute Commands
Bob Zawalich June 15, 2024 updated September 12, 2024

The “If Condition” Commands in cmdutils and Execute Commands ... 1

Executive Summary ... 1

Overview of “If” commands .. 3

The Original Exit Plugin Commands .. 3

Description of the ExitIf Commands .. 5

The “If Condition” commands .. 5

Why add conditions? A bit of history ...7

Conditions ..7

The “ExitIfCondition” Commands ...10

The “RunCommandIfCondition” Commands ..10

RunCommandIf Examples ... 11

Appendix 1: examples of the ManuScript code used to evaluate conditions (TECHNICAL) 13

Appendix 2: Exactly what the conditions test .. 14

Appendix 3: Mapping ExitIf commands to use conditions... 20

Appendix 4: Equivalent non-condition commands ... 22

Executive Summary

cmdutils.plg contains several new routines that use a “condition” to determine what to do. The conditions
available are defined in the new plugin Evaluate Plugin Condition, which must be installed for these
commands to work.

These are the cmdutils routines that support conditions:

ExitIfConditionFalse_cu(condition,message)
ExitIfConditionFalse_YesNo_cu(condition,message)

ExitIfConditionTrue_cu(condition,message)
ExitIfConditionTrue_YesNo_cu(condition,message)

RunCommand1IfConditionFalseElseCommand2_cu(notes_selected,MessageBox_cu(Command1 was
run),MessageBox_cu(Command2 was run),trace_no)

RunCommand1IfConditionTrueElseCommand2_cu(notes_selected,MessageBox_cu(Command1 was
run),MessageBox_cu(Command2 was run),trace_no)

RunCommandAndExitIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)
RunCommandAndExitIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)

RunCommandIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run),trace_no)
RunCommandIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run),trace_no)

To use these commands, you will need the latest versions of these plugins:

• Execute Commands

• cmdutils

• Evaluate Plugin Condition

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
2 SEPTEMBER 12, 2024

Install them (once they are available) using File>Plug-ins>Install Plug-ins. You will need to close and
restart Sibelius before you use these new plugins, even though you usually do not need to do that when using
the installer.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
3 SEPTEMBER 12, 2024

Overview of “If” commands

The plugin Execute Commands can run a series of “commands”, which can include Sibelius commands,
plugins, and cmdutils commands, as shown below.

Execute Commands can run commands in a sequence; there is no if-then-else mechanism to let you do
different things depending on some condition or property of a selected object.

To provide a bit of control in addition to running commands in sequence, I had created a group of ExitIf
commands, which cause the sequence of commands to stop if some condition, such as the selection being
empty, is satisfied. Here is the annotated original set of ExitIf commands:

The Original Exit Plugin Commands

These routines will check for an empty or non-passage selection, or a passage selection that does not include
specific staves or bars, or whether a plugin is installed, or some other criteria. If found, they will give a warning
and either Exit, or ask if you want to continue, possibly after selecting the entire score.

Most of these commands have placeholder parameters, and any parameter can be edited with Edit
Command. The placeholder parameters for the commands in this category will always need to be changed.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
4 SEPTEMBER 12, 2024

The “_Full” versions of these commands are only used in ManuScript plugins, not in Command Macros or
Command Plugins. They will appear in Italic font style in this document.

ContinueIfSelection_Empty_cu(strMsgExit)
ContinueIfSelection_Empty_YesNo_cu(strMsgYesNoContinue)
ContinueIfSelection_NotEmpty_cu(strMsgExit)
ContinueIfSelection_NotEmpty_YesNo_cu(strMsgYesNoContinue)

ContinueIfSelection_Full (score, selection, strMsgYesNoContinue, fIncludeSystemStaff, fNoteRestRequired, fIfEmpty, fYesNo)

• Exits the plugin if there is no selection and the user responds No in the message box. strMsgYesNoContinue is the message the
user will see. Can only be called in ManuScript plugins.

ExitIfSelection_Empty_cu (strMessageIfEmpty)

ExitIfSelection_Empty_Full (score, selection, fIncludeSystemStaff, fNoteRestRequired, strMessageIfEmpty)

• Exits the plugin if there is no selection. Can only be called in ManuScript plugins.

ExitIfSelection_NotPassage_cu (strMessageIfNotPassage)

ExitIfSelection_NotPassage_Full (score, selection, strMessageIfNonPassage)

• Exits the plugin if there is no passage selection. Can only be called in ManuScript plugins.

ExitOrAll_Selection_Empty_cu(strMessageIfEmpty)

ExitOrAll_Selection_Empty_Full(score, selection, fIncludeSystemStaff, fNoteRestRequired, strMessageIfEmpty)

• Exits the plugin if there is no selection, or selects the entire score (non-system selection) and continues. Can only be called in
ManuScript plugins.

ExitOrAll_Selection_NotPassage_cu(strMessageIfNotPassage)

ExitOrAll_Selection_NotPassage_Full(score, selection, strMessageIfNonPassage, fIncludeSystemStaff)

• Exits the plugin if there is no passage selection, or selects the entire score (non-system selection) and continues. Can only be
called in ManuScript plugins.

ExitPlugin_cu

• Exits the plugin immediately. Can be useful when debugging as a way to run a part of a macro and then stop.

ExitIfPlugin_Unavailable_cu (strPluginMenuName)

ExitIfPlugin_Unavailable_Full (score, strPluginMenuName, strMessagePluginUnavailable)

• Exits the plugin if a required plugin is not installed. Can only be called in ManuScript plugins.

ExitIfSelection_Avoid_BottomStaff_cu(strMessage)
ExitIfSelection_Avoid_FirstBar_cu(strMessage)
ExitIfSelection_Avoid_LastBar_cu(strMessage)
ExitIfSelection_Avoid_TopStaff_cu(strMessage)

ExitIfSelection_Avoid_GrandStaff_Bottom_cu(strMessage)
ExitIfSelection_Avoid_GrandStaff_Top_cu(strMessage)

• These will exit the plugin or macro if there is a selection that includes a “forbidden” staff or bar. If the selection is not a passage
selection, it will be temporarily converted into a passage selection that includes all the selected objects, and then restored after
the tests are complete.

ExitIfSelection_Avoid_Full(score, selection, strMessageIn, arrOptions)

• This is called by the Avoid commands and can be called directly by ManuScript plugins.

ExitIfSelection_Needs_GrandStaff_All_cu(The selection must include all the staves of a multi-staff instrument, including
ossias. This plugin will now exit.)

ExitIfSelection_Needs_GrandStaff_Any_cu(The selection must include only staves of a single multi-staff instrument,
including ossias. This plugin will now exit.)

• This will exit the plugin or macro if there is a selection that does not contain specific staves in a multi-staff instrument, such as
a grand staff. If the selection is not a passage selection, it will be temporarily converted into a passage selection that includes
all the selected objects, and then restored after the tests are complete.

ExitIfSelection_Needs_OneStaff_cu(strMessage)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
5 SEPTEMBER 12, 2024

• This will exit the plugin or macro if there is a selection that contains anything other than a single staff. If the selection is not a
passage selection, it will be temporarily converted into a passage selection that includes all the selected objects, and then
restored after the tests are complete.

TestSelection_Needs_Full(score, selection, strMessageIn, fRequireOneStaff, fRequireFullSelect, valRequireGrandStaff)

• This is called by the Needs commands and can be called directly by ManuScript plugins.

Description of the ExitIf Commands

The simplest of these is

ExitPlugin_cu

• Exits the plugin immediately. Can be useful when debugging as a way to run a part of a macro and then stop.

which causes a plugin to immediately stop. This can be useful when you are debugging a sequence of
commands (which I will hereafter call a macro). You can drag the command into the sequence, and when you
run the macro it will stop and the ExitPlugin_cu command, and you can look at the score and see if
everything looks the way you think it should. If not, you need to figure out why not.

All the other ExitIf commands will exit or continue if the current selection meets a specific condition.

ExitIfSelection_Empty_cu (strMessageIfEmpty) is the most likely one of these to be used. Many commands and plugins require a
selection, and things can go awry if nothing is selected. A user can edit the message that appears when the plugin decides to exit. Here
is the command with its default message that appears when you select the command in Execute Commands:

ExitIfSelection_Empty_cu(Nothing is selected. This plugin will now exit.)

You can change the message by selecting the command in the Command List and pressing Edit Command.
The message should at least explain that the plugin is exiting. This sort of thing is critical if you plan to share
your macros or plugins with other users. If they are only for your own use, you can decide for yourself if you
need the warning.

The other ExitIf messages are essentially the same thing, just checking on different conditions. There are
some, like ExitOrAll_Selection_Empty_cu(strMessageIfEmpty), that will put up a message box to ask
you if you want to exit if there is no selection, or if you want to select the entire score and then continue.

There is also a small set of routines that will continue, rather than exit, if the selection is either empty or not
empty. These also have a YesNo form. Instead of just continuing or exiting, a YesNo message box comes up,
and the user can decide whether to exit or continue.

ContinueIfSelection_Empty_cu(strMsgExit)
ContinueIfSelection_Empty_YesNo_cu(strMsgYesNoContinue)
ContinueIfSelection_NotEmpty_cu(strMsgExit)
ContinueIfSelection_NotEmpty_YesNo_cu(strMsgYesNoContinue)

The “If Condition” commands

These new commands,

ExitIfConditionFalse_cu(tuplets_selected,The selection does not contain tuplets. This plugin will now exit.)
ExitIfConditionFalse_YesNo_cu(tuplets_selected,The selection does not contain tuplets. This plugin will now exit.)

ExitIfConditionTrue_cu(tuplets_selected,The selection contains tuplets. This plugin will now exit.)
ExitIfConditionTrue_YesNo _cu(tuplets_selected,The selection contains tuplets. This plugin will now exit.)

RunCommand1IfConditionFalseElseCommand2_cu(notes_selected,MessageBox_cu(Command1 was
run),MessageBox_cu(Command2 was run),trace_no)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
6 SEPTEMBER 12, 2024

RunCommand1IfConditionTrueElseCommand2_cu(notes_selected,MessageBox_cu(Command1 was
run),MessageBox_cu(Command2 was run),trace_no)

RunCommandAndExitIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)
RunCommandAndExitIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)

RunCommandIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run),trace_no)
RunCommandIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run),trace_no)

are different. These commands allow you to specify a condition name, chosen from a limited set of
conditions, described below, and decide to exit or continue based on whether the condition evaluates to True
or False, or to run additional commands depending on how the condition evaluates.

In one case you can choose 2 commands: one that will be run when the evaluation succeeds, and another that
runs when it fails.

 In this example,

ExitIfConditionFalse_cu(tuplets_selected,The selection does not contain tuplets. This plugin will now exit.)

The condition is tuplets_selected, and The selection does not contain tuplets. This plugin will now
exit., separated from the condition by a comma, is a warning message.

If the selection does contain tuplets, the condition will evaluate as True and the plugin will continue. If there
are no tuplets, the condition evaluates as False, warning messages will appear, and the plugin will exit.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
7 SEPTEMBER 12, 2024

Why add conditions? A bit of history

I was considering adding a version of the ExitIf commands that could run a command and then exit if a
“condition” were satisfied. This would be something of the form eventually used by

RunCommandAndExitIfConditionTrue_cu()

However, at the time I did not have separate conditions, and to make this work I would have needed to make
and document modified copies of around 20 ExitIf commands, having a RunCommandAndExitIf…
equivalent for each of them. I was also considering some variants like RunCommandIf…. and
RunCommand1If…ElseCommand2…, each of which would require 20 commands.

This was not practical, so I decided I could make the condition a separate parameter rather than having it be
part of the command name. So instead of having, for example,
RunCommandAndExitIfSelectionEmpty_cu(), I could have
RunCommandAndExitIfConditionTrue_cu(selection_is_empty…), which takes a condition name as
a parameter instead of having the condition be part of the name. The new command could replace all 20 of the
commands I would need, as long as I could figure out a way to define “conditions”.

I defined the conditions in a separate plugin (Evaluate Plugin Condition), which contained a list of
available condition names. The cmdutils IfCondition commands can call that plugin to evaluate the
condition. New conditions could be added to Evaluate Plugin Condition (by me) if more conditions were
needed in the future, without needing to change cmdutils.

I ended up with 10 cmdutils IfCondition commands, which is equivalent to 200 commands if I had not
separated out the conditions.

I considered replacing the existing ExitIf commands with condition-type commands, but decided not to break
existing macros, and that the commands with conditions in the command names were actually easier to work
with than the new ones, since you did not need to find the correct condition name.

I created a set of conditions that would be equivalent to nearly all of the existing ExitIf commands so the
IfCondition commands could be used where the ExitIf commands had been used. I show a mapping of the
ExitIf names to conditions in Appendix 2: Mapping ExitIf commands to use conditions.

Conditions

The conditions available are defined and displayed in the plugin Evaluate Plugin Condition, which must be
installed for these commands to work.

Evaluate Plugin Condition may be run directly so you can see which conditions are available or to test out
new conditions, but you would usually only run it indirectly from one of the IfCondition commands. When
running Evaluate Plugin Condition directly, pressing Evaluate condition will evaluate the condition
selected in the list box and tell you if it currently returns True or False, based most often on what is selected in
the score.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
8 SEPTEMBER 12, 2024

There will only be one form of a condition in the list. There may be selection_is_empty, but not
selection_is_not_empty. There are True and False versions of all the IfCondition commands, so you
could use ExitIfConditionTrue_cu to exit if selection_is_empty is True or ExitIfConditionFalse_cu
to exit if selection_is_empty is False.

Additional conditions could be added to Evaluate Plugin Condition by editing the ManuScript code of the
plugin. A new condition can be added by

1. Add a new condition name to the array dlg_lstConditionNames, preferably in alphabetical order.
2. Add a new case statement to code in API_TestCondition to evaluate the new condition. Return 1 if

the condition is satisfied, 0 if not.

A few more details and examples can be found in the method How_To_Add_New_Conditions in
Evaluate Plugin Condition , which can be seen by editing Evaluate Plugin Condition. Writing a correct
condition can be tricky, but that is the only real work you would need to do. The ManuScript Language
Reference, available at File>Plug-ins> ManuScript Language Reference, will be your friend, and you
can also peruse the code in other plugins for examples (plugin .plg files are plain text files).

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
9 SEPTEMBER 12, 2024

As of August 26, 2024, the available conditions are (“-----” are visual separators in the list)

dlg_lstConditionNames

{

"bottom_staff_selected"

"top_staff_selected"

"first_bar_in_score_selected"

"last_bar_in_score_selected"

"one_staff_only_selected"

"-------"

"passage_selection_bars_fully_selected"

"-------"

"selection_contains_only_all_staves_of_grand_staff"

"selection_contains_bottom staff_of_grand_staff"

"selection_contains_only_staves_in_grand_staff"

"selection_contains_top_staff_of_grand_staff"

"-------"

"selection_is_empty"

"selection_is_empty_system_ok"

"selection_is_passage"

"selection_is_system_passage"

"-------"

"notes_selected"

"notes_or_rests_selected"

"bar_rests_selected"

"rests_selected"

"rests_or_bar_rests_selected"

"tuplets_selected"

"tuplets_or_child_notes_selected"

"tuplets_or_child_notes_or_rests_selected"

"tuplets_or_child_rests_selected"

"-------"

"voice_1_objects_selected"

"voice_2_objects_selected"

"voice_3_objects_selected"

"voice_4_objects_selected"

}

If a macro or plugin runs an IfCondition command with an invalid condition name, the error message will
display all the valid condition names.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
10 SEPTEMBER 12, 2024

The “ExitIfCondition” Commands

ExitIfConditionFalse_cu(condition,message)
ExitIfConditionFalse_YesNo_cu(condition,message)

ExitIfConditionTrue_cu(condition,message)
ExitIfConditionTrue_YesNo_cu(condition,message)

These commands evaluate a condition, and based on the results, will make the plugin exit or continue. On exit
these will put up a message box.

The “RunCommandIfCondition” Commands

RunCommand1IfConditionFalseElseCommand2_cu(condition,command1,command2,traceNoYes)

RunCommand1IfConditionTrueElseCommand2_cu(condition,command1,command2,traceNoYes)

RunCommandAndExitIfConditionFalse_cu(condition,command,traceNoYes)
RunCommandAndExitIfConditionTrue_cu(condition,command,traceNoYes)

RunCommandIfConditionFalse_cu(condition,command,traceNoYes)
RunCommandIfConditionTrue_cu(condition,command,traceNoYes)

These commands evaluate a condition, and based on the results, will run a command before returning. These
commands can be Sibelius commands, cmdutils commands, or plugins. Plugins could be very useful as
commands to be run. You can also use the cmdutils routine RunMacro_cu to run a macro .dat file.

The condition name must be spelled exactly the same as a condition in the plugin Evaluate Plugin
Condition. The command name must be a valid command name. I suggest using Execute Commands to enter
the command you want to run into the Command List following the RunCommand… command, then cut the
command name, use Edit Command to edit the RunCommand… command, and replace the placeholder
command name with the one you had cut, which will now be in the clipboard.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
11 SEPTEMBER 12, 2024

In the “placeholder parameters” for these commands, the condition is “notes_selected” and the command to
be run is “MessageBox_cu(Command was run)”. These placeholders will do no harm if a user forgets to
update the parameters.

The parameter traceNoYes can only be one of the 2 strings (not in quotes): trace_no (the default) or
trace_yes. Use trace_yes if you are debugging the command and want to see some traced debug data. In a
finalized command, this parameter should always be trace_no.

When you set up one of these commands you need to spell the condition and any command names exactly, or
the command will return an error message and cause the running plugin or macro to exit.

The command that is run can be one that will cause the plugin to exit. In the simplest case, you can run the
command ExitPlugin_cu(). In a more complex case, you can create a plugin that includes either

ExitPlugin();

or

cmdutils.ExitPlugin_cu();

either of these should cause the entire plugin to exit. You can instead use one of the commands

RunCommandAndExitIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)
RunCommandAndExitIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)

which will run a command and then exit. That way you don’t need to write a new plugin to force the plugin to
exit but can run an ordinary command and let the RunCommandAndExit command handle the exit. An
example of this could be if you wanted to clear the selection before exiting if a condition fails.

RunCommandIfConditionFalse_cu(condition,command,traceNoYes)
RunCommandIfConditionTrue_cu(condition,command,traceNoYes)

• runs the specified command if the condition evaluates to False or True, then allows the plugin or macro to continue.

RunCommandAndExitIfConditionFalse_cu(condition,command,traceNoYes)
RunCommandAndExitIfConditionTrue_cu(condition,command,traceNoYes)

• runs the specified command if the condition evaluates to False or True, then exits the plugin or macro.

RunCommand1IfConditionFalseElseCommand2_cu(condition,command1,command2,traceNoYes)
RunCommand1IfConditionTrueElseCommand2_cu(condition,command1,command2,traceNoYes)

• These supply 2 commands. Command1 will run if the condition evaluates as desired (True for the True form, False for the False
form). Command 2 will run otherwise. This is a crude form of an if-then-else mechanism, which could provide much more
control over a plugin sequence than was previously possible.

RunCommandIf Examples

RunCommandIfConditionTrue_cu(selection_is_empty,MessageBox_cu(Nothing is selected),trace_no)

If the selection is empty, the command MessageBox_cu will be run, which will put up a warning message.
The plugin will then continue, and not find anything to process.

RunCommandAndExitIfConditionTrue_cu(notes_selected, select_none,trace_no)

If the selection contains notes, the command select_none will be run, which will clear the selection.
The plugin will then exit. If no notes had been selected, the plugin continues.

RunCommand1IfConditionFalseElseCommand2_cu(tuplets_selected,PluginNoTuplets.plg,PluginTuplets.plg,trace_no)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
12 SEPTEMBER 12, 2024

Here the commands called are 2 plugins, and this command is acting as a switcher. If the selection does not
contain tuplets (the False command form is being used), the command PluginNoTuplets.plg will be run. If
tuplets had been selected, the command PluginTuplets.plg will be run. In either case, the original plugin
will continue, unless one of the called plugins calls ExitPlugin(). I would expect that if you were using this
command as a switcher then it would be the last command in the calling plugin or macro, so it would terminate
immediately when control returned to it.

In some cases, you will need to write a custom plugin to serve as the command that is to be called, because the
existing commands may not be able to do enough. But I think there can be interesting possibilities here.

To use these commands, you will need the latest versions of these plugins:

• Execute Commands

• cmdutils

• Evaluate Plugin Condition

Install them (once available) using File>Plug-ins>Install Plug-ins. You will need to close and restart
Sibelius before you use these new plugins, even though you usually do not need to do that when using the
installer.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
13 SEPTEMBER 12, 2024

Appendix 1: examples of the ManuScript code used to evaluate conditions (TECHNICAL)

In case you are interested in adding additional conditions to the plugin (for your own use)

Each condition in Evaluate Plugin Conditions is evaluated by adding a case statement to the switch
statement in the method API_TestCondition in the plugin Evaluate Plugin Condition.

The name used in the case() statememt must match exactly an entry in the array dlg_lstConditionNames.
The names are English-only.

The case statement should return 1 if it evaluates to True, and 0 (zero) if evaluating to False.

Here is a simple example that checks whether the selection is a passage selection

 case ("selection_is_passage")
 {
 if (selection.IsPassage)
 {
 return 1; // condition met
 }

 return 0;
 }

Most of the other conditions in API_TestCondition reproduce the conditions implicitly used in the cmdutils
ExitIf commands, and they call code in cmdutils to do the work. Here is code for the condition
"one_staff_only_selected".

 case ("one_staff_only_selected")
 {
 fRequireOneStaff = True;
 fRequireFullSelect = False;
 valRequireGrandStaff = 0; // not used
 strMessageIn = "not_used";

 //TestSelection... will convert to a passage selection temporarily if we start with a non-passage selection

 strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageIn, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
 if (strMessageOut = "")
 {
 return 1;
 }
 return 0;
 }

There will certainly be simpler ways to implement these conditions, but in this case I wanted these conditions
to match the results of the comparable cmdutils ExitIf routine - in this example,
ExitIfSelection_Needs_OneStaff_cu, whose code is pretty much exactly the same as this case statement.
If you are writing your own conditions, you will not be restrained in the same way, and you can write any code
you want, as long as it returns 1 for True, and zero for False.

You can also call into the cmdutils routines if you like, but it can be a bit challenging.

Another source for condition-like code in Filtering plugins, especially something like Filter With Deselect,
which has lots of filters. In Filter With Deselect , API_ProcessObjects is the main object processing loop,
and for each selected object it calls IsDesiredObject, where the analogue of the condition is defined. You can
find a lot of good models for new conditions in that code.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
14 SEPTEMBER 12, 2024

Appendix 2: Exactly what the conditions test

Here is the actual code in the plugin Evaluate Plugin Conditions that evaluates conditions as of this writing
(September 12, 2024)

This is described somewhat in the previous appendix, but here is the main Switch statement in
API_TestCondition.

A number of conditions, such as "bottom_staff_selected", mimic what non-condition cmdutils commands do,
and these end up calling code in the cmdutils plugin. Some, like “tuplets_selected”, arer straightforward
ManuScript code, as:

 case ("tuplets_selected")
 {
 for each Tuplet tup in selection
 {
 return 1; // condition met
 }

 return 0;

 }

If you really need to find exactly what the condition looks at edit the plugin Evaluate Plugin Conditions,
look in the routine API_TestCondition, and if the code in the switch statement calls other routines, find
those routines and analyze them until you get to the lowest level. All the plugins that are called can be edited
using File>Plug-ins>Edit Plug-ins. Just be careful not to change anything unless you are confident that you
know what you are changing.

That said, here is the essential conditions code:

switch (strConditionName)
{
 case ("bottom_staff_selected")
 {
 arrOptions[0] = 1; // fTopStaffSelected
 arrOptions[1] = 0; // fBottomStaffSelected
 arrOptions[2] = 0; // fFirstBarSelected
 arrOptions[3] = 0; // fLastBarSelected
 arrOptions[4] = 0; // fGrandStaffTopSelected;
 arrOptions[5] = 0; // fGrandStaffBottomSelected

 valRet = TestObjectsSelected(score, selection, arrOptions);
 return valRet;
 }
 case ("first_bar_in_score_selected")
 {
 arrOptions[0] = 0; // fTopStaffSelected
 arrOptions[1] = 0; // fBottomStaffSelected
 arrOptions[2] = 1; // fFirstBarSelected
 arrOptions[3] = 0; // fLastBarSelected
 arrOptions[4] = 0; // fGrandStaffTopSelected;
 arrOptions[5] = 0; // fGrandStaffBottomSelected

 valRet = TestObjectsSelected(score, selection, arrOptions);
 return valRet;
 }
 case ("last_bar_in_score_selected")
 {

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
15 SEPTEMBER 12, 2024

 arrOptions[0] = 0; // fTopStaffSelected
 arrOptions[1] = 0; // fBottomStaffSelected
 arrOptions[2] = 0; // fFirstBarSelected
 arrOptions[3] = 1; // fLastBarSelected
 arrOptions[4] = 0; // fGrandStaffTopSelected;
 arrOptions[5] = 0; // fGrandStaffBottomSelected

 valRet = TestObjectsSelected(score, selection, arrOptions);
 return valRet;
 }
 case ("one_staff_only_selected")
 {
 fRequireOneStaff = True;
 fRequireFullSelect = False;
 valRequireGrandStaff = 0; // not used
 strMessageIn = "not_used";

 //TestSelection... will convert to a passage selection temporarily if we start with a non-passage selection

 strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageIn, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
 if (strMessageOut = "")
 {
 return 1;
 }
 return 0;
 }
 case ("passage_selection_bars_fully_selected")
 {
 fRequireOneStaff = False;
 fRequireFullSelect = True;
 valRequireGrandStaff = 0; // not used
 strMessageIn = "not_used";

 strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageIn, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
 if (strMessageOut = "")
 {
 return 1;
 }
 return 0;
 }
 case ("selection_contains_only_staves_in_grand_staff")
 {
 fRequireOneStaff = False;
 fRequireFullSelect = False;
 valRequireGrandStaff = 3; //only staves from a single Grand Staff
 strMessageIn = "not_used";

 strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageIn, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
 if (strMessageOut = "")
 {
 return 1;
 }
 return 0;
 }
 case ("selection_contains_only_all_staves_of_grand_staff")
 {
 fRequireOneStaff = False;
 fRequireFullSelect = False;
 valRequireGrandStaff = 4; // all staves required
 strMessageIn = "not_used";

 strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageIn, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
 if (strMessageOut = "")

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
16 SEPTEMBER 12, 2024

 {
 return 1;
 }
 return 0;
 }
 case("selection_contains_bottom staff_of_grand_staff")
 {
 arrOptions[0] = 0; // fTopStaffSelected
 arrOptions[1] = 0; // fBottomStaffSelected
 arrOptions[2] = 0; // fFirstBarSelected
 arrOptions[3] = 0; // fLastBarSelected
 arrOptions[4] = 0; // fGrandStaffTopSelected;
 arrOptions[5] = 1; // fGrandStaffBottomSelected

 valRet = TestObjectsSelected(score, selection, arrOptions);
 return valRet;
 }
 case("selection_contains_top_staff_of_grand_staff")
 {
 arrOptions[0] = 0; // fTopStaffSelected
 arrOptions[1] = 0; // fBottomStaffSelected
 arrOptions[2] = 0; // fFirstBarSelected
 arrOptions[3] = 0; // fLastBarSelected
 arrOptions[4] = 1; // fGrandStaffTopSelected;
 arrOptions[5] = 0; // fGrandStaffBottomSelected

 valRet = TestObjectsSelected(score, selection, arrOptions);
 return valRet;
 }
 case ("notes_selected")
 {
 for each Note n in selection
 {
 return 1; // condition met
 }
 return 0;
 }
 case ("notes_or_rests_selected")
 {
 for each NoteRest nr in selection
 {
 return 1; // condition met
 }
 return 0;
 }
 case ("bar_rests_selected")
 {
 for each BarRest br in selection
 {
 return 1; // condition met
 }
 return 0;
 }
 case ("rests_selected")
 {
 for each NoteRest nr in selection
 {
 if (nr.NoteCount = 0)
 {
 return 1; // condition met
 }
 }
 return 0;
 }
 case ("rests_or_bar_rests_selected")
 {
 for each NoteRest nr in selection

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
17 SEPTEMBER 12, 2024

 {
 if (nr.NoteCount = 0)
 {
 return 1; // condition met
 }
 }
 for each BarRest br in selection
 {
 return 1; // condition met
 }
 return 0;
 }
 case ("tuplets_selected")
 {
 for each Tuplet tup in selection
 {
 return 1; // condition met
 }

 return 0;
 }
 case ("tuplets_or_child_notes_or_rests_selected")
 {
 for each Tuplet tup in selection
 {
 return 1; // condition met
 }
 for each NoteRest nr in selection
 {
 if (nr.ParentTupletIfAny != null) // note/chord or rest ok
 {
 return 1; // condition met
 }
 }
 return 0;
 }
 case ("tuplets_or_child_notes_selected")
 {
 for each Tuplet tup in selection
 {
 return 1; // condition met
 }
 for each NoteRest nr in selection
 {
 if (nr.ParentTupletIfAny != null)
 {
 if (nr.NoteCount != 0) // note or chord but not rest
 {
 return 1; // condition met
 }
 }
 }
 return 0;
 }
 case ("tuplets_or_child_rests_selected")
 {
 for each Tuplet tup in selection
 {
 return 1; // condition met
 }
 for each NoteRest nr in selection
 {
 if (nr.ParentTupletIfAny != null)
 {
 if (nr.NoteCount = 0) // rest not notes or chords
 {
 return 1; // condition met

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
18 SEPTEMBER 12, 2024

 }
 }
 }
 return 0;
 }
 case ("selection_is_empty")
 {
 fIncludeSystemStaff = False;
 fNoteRestRequired = False;
 val = TrueFalseAsNumber(cmdutils.IsEmptySelection_Full(score, selection, fIncludeSystemStaff, fNoteRestRequired));
 return (val);
 }
 case ("selection_is_empty_system_ok")
 {
 fIncludeSystemStaff = True;
 fNoteRestRequired = False;
 val = TrueFalseAsNumber(cmdutils.IsEmptySelection_Full(score, selection, fIncludeSystemStaff, fNoteRestRequired));
 return (val);
 }
 case ("selection_is_passage")
 {
 if (selection.IsPassage)
 {
 return 1; // condition met
 }

 return 0;
 }
 case ("selection_is_system_passage")
 {
 if (selection.IsSystemPassage)
 {
 return 1; // condition met
 }

 return 0;
 }
 case ("top_staff_selected")
 {
 arrOptions = CreateArray();
 arrOptions[0] = 1; // fTopStaffSelected
 arrOptions[1] = 0; // fBottomStaffSelected
 arrOptions[2] = 0; // fFirstBarSelected
 arrOptions[3] = 0; // fLastBarSelected
 arrOptions[4] = 0; // fGrandStaffTopSelected;
 arrOptions[5] = 0; // fGrandStaffBottomSelected

 valRet = TestObjectsSelected(score, selection, arrOptions);
 return valRet;
 }
 case ("voice_1_objects_selected")
 {
 valRet = (VoiceSelected(selection, 1));
 //trace("API_TestCondition Voice1Selected valRet: " & valRet);
 return valRet;
 }
 case ("voice_2_objects_selected")
 {
 return(VoiceSelected(selection, 2));
 }
 case ("voice_3_objects_selected")
 {
 return(VoiceSelected(selection, 3));
 }
 case ("voice_4_objects_selected")
 {
 return(VoiceSelected(selection, 4));

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
19 SEPTEMBER 12, 2024

 }
 case ("voice_1_selected") // the next 4 statements are here only to support macros made before the commands were renamed
 {
 valRet = (VoiceSelected(selection, 1));
 //trace("API_TestCondition Voice1Selected valRet: " & valRet);
 return valRet;
 }
 case ("voice_2_selected")
 {
 return(VoiceSelected(selection, 2));
 }
 case ("voice_3_selected")
 {
 return(VoiceSelected(selection, 3));
 }
 case ("voice_4_selected")
 {
 return(VoiceSelected(selection, 4));
 }

}

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
20 SEPTEMBER 12, 2024

Appendix 3: Mapping ExitIf commands to use conditions

I mentioned above that I set up conditions so they could do the equivalent of the existing ExitIf commands. It is
a bit tricky to map the ExitIf name to the appropriate condition and ExitIfConditionTrue/False command. You
need to choose both the condition and the appropriate True/False form of the command.

Here is how they are related:

Exit or Continue If Command Equivalent using <condition>

ContinueIfSelection_Empty_cu() ExitIfConditionFalse_cu(selection_is_empty,<msg>)
ContinueIfSelection_Empty_YesNo_cu() ExitIfConditionFalse_YesNo_cu(selection_is_empty,<msg>)
ContinueIfSelection_NotEmpty_cu() ExitIfConditionTrue_cu(selection_is_empty,<msg>)
ContinueIfSelection_NotEmpty_YesNo_cu() ExitIfConditionTrue_YesNo_cu(selection_is_empty,<msg>)
//ExitIfPlugin_Unavailable_cu() No equivalent
ExitIfSelection_Avoid_BottomStaff_cu\() ExitIfConditionTrue_cu(bottom_staff_selected,<msg>)
ExitIfSelection_Avoid_FirstBar_cu() ExitIfConditionTrue_cu(first_bar_in_score_selected,<msg>)
ExitIfSelection_Avoid_GrandStaff_Top_cu() ExitIfConditionTrue_cu(selection_contains_top staff_of_grand_staff,<msg>)
ExitIfSelection_Avoid_GrandStaff_Bottom_c
u()

ExitIfConditionTrue_cu(selection_contains_bottom staff_of_grand_staff,<msg>)

ExitIfSelection_Avoid_LastBar_cu() ExitIfConditionTrue_cu(last_bar_in_score_selected,<msg>)
ExitIfSelection_Avoid_TopStaff_cu() ExitIfConditionTrue_cu(top_staff_selected,<msg>)
ExitIfSelection_Empty_cu() ExitIfConditionTrue_cu(selection_is_empty,<msg>)
ExitIfSelection_Empty_SystemOK_cu() ExitIfConditionTrue_cu(selection_is_empty_system_ok,<msg>)
ExitIfSelection_Needs_FullSelect_cu() ExitIfConditionFalse_cu(passage_selection_bars_fully_selected,<msg>)
ExitIfSelection_Needs_GrandStaff_All_cu() ExitIfConditionFalse_cu(selection_contains_only_all_staves_of_grand_staff,<ms

g>)
ExitIfSelection_Needs_GrandStaff_Any_cu() ExitIfConditionFalse_cu(selection_contains_only_staves_in_grand_staff,<msg>)
ExitIfSelection_Needs_OneStaff_cu() ExitIfConditionFalse_cu(one_staff_only_selected,<msg>)
ExitIfSelection_NotPassage_cu() ExitIfConditionFalse_cu(selection_is_passage,<msg>)
ExitIfSelection_NotEmpty_cu() ExitIfConditionFalse_cu(selection_is_empty,<msg>)
ExitOrAll_Selection_Empty_cu() No equivalent*
ExitOrAll_Selection_Empty_SystemOK_cu() No equivalent*
ExitOrAll_Selection_NotPassage_cu() No equivalent*
//ExitPlugin_cu() No equivalent

* These commands can be simulated with a fair bit of work.
ExitOrAll_Selection_Empty_cu(), for example, does this:

• Checks if selection is empty.
o If not, it returns without exiting
o If empty

▪ Put up a YesNo message box asking the user to exit (No) or to select all and continue
(Yes)

If No, the plugin exits
If Yes, the plugin passage selects (not a system passage selection, just the blue box) the
entire score and then continues/does not exit.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
21 SEPTEMBER 12, 2024

One could approach this by using

RunCommandIfConditionTrue_cu(selection_is_empty,<command>,trace_no)

If the selection is empty, it will run the command, if not, it will just continue. What would be needed would be a
command that would put up the message box, exit on No, and if Yes, passage select all and continue.

There is no existing command that would do this, so you would likely need to write a small ManuScript plugin
to do this. You could use the code in cmdutils.ExitOrAll_Selection_Empty_cu() as a model, but it is
probably more trouble than it’s worth. Just use ExitOrAll_Selection_Empty_cu().

What works well in this situation is to have 2 commands. One will test the condition and put up a message box
to provide a warning but will not run a functional command or exit. The next will check the same condition and
if True will run a real command and then exit.

This effectively gives the IfCondition commands a mechanism to warn before exiting.

In the following example, if notes are selected, the first command will just put up a message box and stop. The
second command will test the same condition and will clear the selection and exit.

If the condition had evaluated to False, neither command would have performed any action.

RunCommandIfConditionTrue_cu(notes_selected,MessageBox_cu(Exiting because selection
contains notes),trace_no)

RunCommandAndExitIfConditionTrue_cu(notes_selected,Select All,trace_no)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
22 SEPTEMBER 12, 2024

Appendix 4: Equivalent non-condition commands

If there is no available condition for what you want, you can sometimes use Filters to accomplish what you
need.

This is pretty intense, so feel free to skip it.

You may have been using something like this:

RunCommandAnd ExitIfConditionTrue_cu(tuplets_selected,<command>,trace_no)

Which would run <command> and then exit if the selection contained tuplet objects. Say that you
wanted to test for tuplet objects or notes/chords that were children of tuplets, and there was no condition that
could test this, but there was a filter that would filter for tuplet objects or notes/chords that were children of
tuplets.

You could save the selection, then run a filter, and test for whether anything had been selected.

If nothing were selected, i.e., the selection was empty, no such tuplets or notes would be selected, so we would
want to restore the original selection and continue. If the selection were not empty, we would want to restore
the original selection, run the specified command, and exit.

The details of this are tricky, so pause a moment to be sure it makes sense.

Note that Saving and Restoring a selection works well for a passage selection but will not restore the
selection in a non-passage selection if any of the selected objects were changed or added or deleted. You really
need to understand what is happening to the selection to make this work.

In this example, we will not change any selected objects, so it will work even with a non-passage selection.

Let us deal with the worst case and start with a non passage selection. For a filter, we could run any Sibelius
filtering command, such as filter_nonspecial_barlines. This gives you access to all the filters on
Home>Filters. You could also run any filtering plugin, ideally one that does not bring up a dialog. For some
more complex filters, you could write your own filtering plugin using one of the Custom Filter plugins as a
template. You may find useful options in the Filter Other or Filter With Deselect plugins, and for these
you could use the New Plugin… button to generate a command line for a single filter with no dialog.

In this example we will use the plugin Filter Other and have it generate a command line for Tuplets and
Notes Under Tuplets with the New Plugin… button.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
23 SEPTEMBER 12, 2024

Here is the dialog that appears when you press New plugin… and tell it to append the command line to the
Execute Command Command List:

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
24 SEPTEMBER 12, 2024

Here is what the Command List in Execute Commands would look like.

Let’s pause here for a moment and regroup. Here is the plan: we are simulating the following instruction with
a slightly different condition, so we can also process selected notes that are children of tuplets:

RunCommandAnd ExitIfConditionTrue_cu(tuplets_selected,<command>,trace_no)

Here we go.

1. Call SaveSelection_cu so we can restore the original selection later
2. Run the generated filter command, which will filter tuplets or notes under a tuplet. This will often

change the selection. If no tuplets or tuplet notes were selected, the selection will be empty.
a. Here is the description of the problem to be solved, from above:

“You could then test whether the selection had been empty or not. If empty, no such tuplets or notes

would be selected, so we would want to restore the original selection and continue. If the selection were not
empty, we would want to restore the original selection, run the specified command, and exit.”

One needs to think carefully about this. The appropriate condition we have is “selection_is_empty”. If the
selection is empty, then no tuplets or notes under tuplets were found. We want to exit if such objects were
found, so we will use the False form of the RunCommandIfCondition command

As in the example above, we might want to put up a messages box explaining why we are exiting, so add this
command, which tests the same condition as the Exit command, but if the condition returns False if will just
put up a message box.

3. RunCommandIfConditionFalse_cu(selection_is_empty,MessageBox_cu(Exiting because

selection contains tuplets or notes inside tuplets),trace_no)

4. RunCommandAndExitIfConditionFalse_cu(selection_is_empty,RestoreSelection_cu(),t
race_no)

a. we will want to restore the selection and exit if the filtered selection is not empty, so we run the
instruction above. If we do not exit, we want to restore the selection and continue.

5. RestoreSelection_cu()
6. So here is the set of instructions we want:

SaveSelection_cu()
RunPluginEntry_cu(FilterOther.plg, API_ProcessObjects, str_Action, select, str_FilterType, Tuplets Plus Notes Under Tuplets,
str_StyleName, None, str_fRestoreSelection, no, str_fShowResults, yes, str_fTraceLocation, yes)
RunCommandIfConditionFalse_cu(selection_is_empty,MessageBox_cu(Exiting because selection contained tuplets or notes inside
tuplets),trace_no)
RunCommandAndExitIfConditionFalse_cu(selection_is_empty,RestoreSelection_cu(),trace_no)
RestoreSelection_cu()

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
25 SEPTEMBER 12, 2024

To be sure it is actually working correctly, I often add an ExitPlugin() command into the Command List, and
slide it up and down so I can see the results at various points in the command execution.

Often, just because the final result is correct, it does not prove that the processing was correct. This is the life of
a programmer…

Here is the original selection again. Assume the ExitPlugin_cu() command is not present.

We see this message box after the filter. Note that the selection at this point includes only the notes in the
tuplets, as expected.

When we OK the message box, the selection should be restored to the original, and it is. Here is the final result.
The original selection is restored, as expected.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
26 SEPTEMBER 12, 2024

What if we ran this macro when the selection did not contain any tuplets or children of tuplets, such as this?

In this case, neither RunCommandIf command will run commands or exit. The filter would have left an
empty selection, but the last command, RestoreSelection_cu() will be run, so the selection appears to be
unchanged.

Since the selection was unchanged, this was a case where I wanted to make sure the score was correct at an
intermediate stage, so I added an ExitPlugin() command after the filter to show the state of the score after the
filter:

In this example, the selection was empty after the filter, as expected. When I removed the ExitPlugin_cu()
call, the selection was restored at the end, again as expected.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE
27 SEPTEMBER 12, 2024

