The “If Condition” Commands in ecmdutils and Execute Commands
Bob Zawalich June 15, 2024 updated September 12, 2024

The “If Condition” Commands in cmdutils and Execute Commandsc.ccceevveevieriiernieniienniiennieeeieeeeesee e
EXECULIVE SUITIIMATYuviieiiiiiiieieiiiieeesiiiteesssireesessteeeesssteeessssreeeesssseeesssssaeesssssseessssssssessssssseesssssseessnssssesssssenes
OVETrVIEW Of “If” COMIMANAS ...cuviieuieeiieniieeitieeteeit ettt e st e et e st e e bt e st e e st e st e e st e sabeesstesaseesatessseessaesasaenseens
The Original Exit Plugin COMMANASccccueeriiieiriuieiniiieriieeniieeniieesseesssetessseesssseesssseesssseesssseessssesssssesssssessssaes
Description of the EXitIf COMMANASccccueerriiiiiiiiiniiiiniieirieeete et sttt e et e s ste e s steesssreesssseesssseesssseessssesns
The “If Condition” COMMANAScecviirriiiiriiieiriiieeritteerreeeeteessteessteessreesssseesssseessseesssseesssseesssseesssseesssseessssessssees
Why add conditions? A bit Of hiStOTYccc.eeeueriiiiieeee ettt
COMAITIONS 1.vetueteeeiteeeiteeette ettt et e e bt e et e e s stt e e s s ate e s bt e essaessssaessssaessssaeassaessseesssseessaeesssaeesssseenssaeenssesssseenns
The “ExitIfCondition” COMMEANASccveirruieeriiieiiiieiiieereieeesteessteeeseeesssaeessseessseessssessssseessssesssssesssseesssssesssnes 10
The “RunCommandIfCondition” COmMMANAS.........cccterierriirniieniiienieniteeteeieeete sttt essre e st e e saeestesaeesaaessseesane 10
RuUnCommandIf EXAMPIES........ccccieiiiiieieiieeeieeecieeeiteeestessstteesteeeesaeessseeessseesssseessssessssssessssesssssesssssessssesnnseen 11
Appendix 1: examples of the ManuScript code used to evaluate conditions (TECHNICAL)c.ccccecvervueenueene 13
Appendix 2: Exactly what the conditions tESt........cccuiiiciiiiiiiiiciieccee ettt et e e eae e eae e s vae e s aeeesaaeeenns 14
Appendix 3: Mapping ExitIf commands to use CONAItiONS.......ccueiecieeeiieieiieieiieeeieeeeeeeeereeesreeesaeeeeaeeeeneens 20
Appendix 4: Equivalent non-condition COMMANASccecvuerriieiniierniieiniiensiteesieeeseeesseeeessreesssseesssseesssaeens 22

Executive Summary

cmdutils.plg contains several new routines that use a “condition” to determine what to do. The conditions
available are defined in the new plugin Evaluate Plugin Condition, which must be installed for these
commands to work.

These are the cmdutils routines that support conditions:

ExitlfConditionFalse_cu(condition,message)
ExitlfConditionFalse_YesNo_cu(condition,message)

ExitlfConditionTrue_cu(condition,message)
ExitlfConditionTrue_YesNo_cu(condition,message)

RunCommand1llfConditionFalseElseCommand2_cu(notes_selected,MessageBox_cu(Commandl was
run),MessageBox_cu(Command2 was run),trace_no)

RunCommand1lfConditionTrueElseCommand2_cu(notes_selected,MessageBox_cu(Commandl was
run),MessageBox_cu(Command2 was run),trace_no)

RunCommandAndExitlifConditionFalse_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)
RunCommandAndExitlfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)

RunCommandIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run),trace_no)
RunCommandIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run),trace_no)

To use these commands, you will need the latest versions of these plugins:
¢ Execute Commands
e cmdutils
¢ Evaluate Plugin Condition

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Install them (once they are available) using File>Plug-ins>Install Plug-ins. You will need to close and
restart Sibelius before you use these new plugins, even though you usually do not need to do that when using
the installer.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Overview of “If” commands

The plugin Execute Commands can run a series of “commands”, which can include Sibelius commands,
plugins, and cmdutils commands, as shown below.

Execute Commands - Version 01.81.54 - by Bob Zawalich - cdutils Version 01.49.97

Add commands to the Command List, then choose Execute to run them. Duplicate Command List entries are disallowed, so repeated command names will be given a suffix to

make them unique.

You can export or import a list of commands. The exported files will be stored in the “Execute_Commands" subfolder of your default Scores folder, and will have the extension

".dat".

You can also generate a new plugin that contains the commands in the Command List. Click New Plugin... for details.

Command categories

Find in list ¥

category: | Home tab

add_stave_above

All ContinuelfSelection_Empty cu(The selection is not empt...
Appearance tab ContinuelfSelection_Empty_YesNo_cu(The selection is no... -
Clef Styles ContinuelfSelection NotEmpty cu(Nothing is selected. T... Add Command To Command List ¥ |

Cmdutils Add Intervals
Cmdutils Add Objects
Cmdutils Exit Plugin
Cmdutils Other
Cmdutils Selection
Cmdutils Text Format

Cmdutils Transpose Intervals

ContinuelfSelection_NotEmpty_YesNo_cu(Nothing is sel...

ExitlfConditionFalse_cu(selection_contains_tuplets,The se...

ExitlfConditionFalse_YesNo_cu(selection_contains_tuplet...

ExitlfConditionTrue_cu(selection_contains_tuplets, The sel...
ExitlfConditionTrue_YesNo_cu(selection_contains_tuplets...

ExitlfPlugin_Unavailable_cu(Resize Bar)

ExitlfSelection_Avoid_BottomStaff cu(The selection may ...

Remove selected command ¥

Cmdutils View ExitlfSelection_Avoid_FirstBar_cu(The selection may not i...

Cmdutils X Y Offsets ExitIfSelection_Avoid_GrandStaff_Bottom_cu(The bottom...

File tab ExitlfSelection_Avoid_GrandStaff Top_cu(The top staff of... _ _

Home tab ExitlfSelection_Avoid_LastBar_cu(The selection may not i... ,_at':;:;:‘g.',:;::;g'&:;’;,}hp

Keypad (accidentals)
Keypad (all)

Keypad (articulations)
Keypad (beams/tremolos)
Keypad (common notes)
Keypad (jazz articulations)
Keypad (more notes)

ExitlfSelection_Avoid_TopStaff_cu(The selection may not ...
ExitlfSelection_Empty_cu(Nothing is selected. This plugin...
ExitIfSelection_Empty_SystemOK_cu(Nothing is selected....
ExitlfSelection Needs FullSelect cu(The selection must h...
ExitlfSelection_Needs_GrandStaff_All_cu(The selection m...

ExitlfSelection_Needs GrandStaff Any cu(The selection ...

ExitlfSelection_Needs_OneStaff cu(The selection must in...

plugin, and a Sibelius command

Remove All ¥

ExitlfSelection_Empty cu(Nothing is selected. This plugin will now exit.)

Add Fingering To Notes (Plug-in 955)
Add Staff Above

Layout tab ExitlfSelection_NotEmpty_cu(The selection is not empty. ...
Line Styles ExitlfSelection_NotPassage_cu(A passage selection is req...
Moving ExitOrAll_Selection_Empty_cu(Nothing is selected. Choo...
Navigation ExitOrAll_Selection_Empty SystemOK_cu(Nothing is sele...
Notations tab ExitOrAll_Selection_NotPassage_cu(A passage selection i...
Note Input tab ExitPlugin_cu() Up A Down ¥ Trace List A&
Noteheads
Other Export List A ... Import List A ...
Parts tab
Play tab Edit command A... Add new command... A
Plug-ins
Review tab Add comment A... New Plugin...
Selection
Text Styles Run Command Macro... Execute Command List A
Text tab v

Trace All Commands Trace List & Execute Current Command A Help... Cancel

Execute Commands can run commands in a sequence; there is no if-then-else mechanism to let you do
different things depending on some condition or property of a selected object.

To provide a bit of control in addition to running commands in sequence, I had created a group of ExitIf
commands, which cause the sequence of commands to stop if some condition, such as the selection being
empty, is satisfied. Here is the annotated original set of ExitIf commands:

The Original Exit Plugin Commands

These routines will check for an empty or non-passage selection, or a passage selection that does not include
specific staves or bars, or whether a plugin is installed, or some other criteria. If found, they will give a warning
and either Exit, or ask if you want to continue, possibly after selecting the entire score.

Most of these commands have placeholder parameters, and any parameter can be edited with Edit
Command. The placeholder parameters for the commands in this category will always need to be changed.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

The “_Full” versions of these commands are only used in ManuScript plugins, not in Command Macros or
Command Plugins. They will appear in Italic font style in this document.

ContinuelfSelection_Empty_cu(strMsgEXit)
ContinuelfSelection_Empty_YesNo_cu(strMsgYesNoContinue)
ContinuelfSelection_NotEmpty_cu(strMsgEXxit)
ContinuelfSelection_NotEmpty_YesNo_cu(strMsgYesNoContinue)

ContinuelfSelection_Full (score, selection, strMsgYesNoContinue, fincludeSystemStaff, fNoteRestRequired, fIfEmpty, fYesNo)
e Exits the plugin if there is no selection and the user responds No in the message box. strMsgYesNoContinue is the message the
user will see. Can only be called in ManuScript plugins.

ExitlfSelection_Empty_cu (strMessagelfEmpty)

ExitlfSelection_Empty_Full (score, selection, fincludeSystemStaff, fNoteRestRequired, strMessagelfEmpty)
e Exits the plugin if there is no selection. Can only be called in ManuScript plugins.

ExitlfSelection_NotPassage_cu (strMessagelfNotPassage)

ExitlfSelection_NotPassage_Full (score, selection, strMessagelfNonPassage)
e Exits the plugin if there is no passage selection. Can only be called in ManuScript plugins.

ExitOrAll_Selection_Empty_cu(strMessagelfEmpty)

ExitOrAll_Selection_Empty_Full(score, selection, fIncludeSystemStaff, fNoteRestRequired, strMessagelfEmpty)
e Exits the plugin if there is no selection, or selects the entire score (non-system selection) and continues. Can only be called in
ManuScript plugins.

ExitOrAll_Selection_NotPassage_cu(strMessagelfNotPassage)

ExitOrAll_Selection_NotPassage_Full(score, selection, strMessagelfNonPassage, fIncludeSystemStaff)
e Exits the plugin if there is no passage selection, or selects the entire score (non-system selection) and continues. Can only be
called in ManuScript plugins.

ExitPlugin_cu
e Exits the plugin immediately. Can be useful when debugging as a way to run a part of a macro and then stop.

ExitlfPlugin_Unavailable_cu (strPluginMenuName)

ExitlfPlugin_Unavailable_Full (score, strPluginMenuName, strMessagePluginUnavailable)
e Exits the plugin if a required plugin is not installed. Can only be called in ManuScript plugins.

ExitlfSelection_Avoid_BottomStaff_cu(strMessage)
ExitlfSelection_Avoid_FirstBar_cu(strMessage)
ExitlfSelection_Avoid_LastBar_cu(strMessage)
ExitlfSelection_Avoid_TopStaff_cu(strMessage)

ExitlfSelection_Avoid_GrandStaff_Bottom_cu(strMessage)
ExitlfSelection_Avoid_GrandStaff_Top_cu(strMessage)
e These will exit the plugin or macro if there is a selection that includes a “forbidden” staff or bar. If the selection is not a passage
selection, it will be temporarily converted into a passage selection that includes all the selected objects, and then restored after
the tests are complete.

ExitlfSelection_Avoid_Full(score, selection, strMessageln, arrOptions)
e This is called by the Avoid commands and can be called directly by ManuScript plugins.

ExitlfSelection_Needs_GrandStaff_All_cu(The selection must include all the staves of a multi-staff instrument, including
ossias. This plugin will now exit.)

ExitlfSelection_Needs_GrandStaff_Any_cu(The selection must include only staves of a single multi-staff instrument,
including ossias. This plugin will now exit.)
e This will exit the plugin or macro if there is a selection that does not contain specific staves in a multi-staff instrument, such as
a grand staff. If the selection is not a passage selection, it will be temporarily converted into a passage selection that includes
all the selected objects, and then restored after the tests are complete.

ExitlfSelection_Needs_OneStaff_cu(strMessage)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

® This will exit the plugin or macro if there is a selection that contains anything other than a single staff. If the selection is not a
passage selection, it will be temporarily converted into a passage selection that includes all the selected objects, and then
restored after the tests are complete.

TestSelection_Needs_Full(score, selection, strMessageln, fRequireOneStaff, fRequireFullSelect, valRequireGrand Staff)
e This is called by the Needs commands and can be called directly by ManuScript plugins.

Description of the ExitIf Commands

The simplest of these is

ExitPlugin_cu
e Exits the plugin immediately. Can be useful when debugging as a way to run a part of a macro and then stop.

which causes a plugin to immediately stop. This can be useful when you are debugging a sequence of
commands (which I will hereafter call a macro). You can drag the command into the sequence, and when you
run the macro it will stop and the ExitPlugin_ cu command, and you can look at the score and see if
everything looks the way you think it should. If not, you need to figure out why not.

All the other ExitIf commands will exit or continue if the current selection meets a specific condition.

ExitlfSelection_Empty_cu (strMessagelfEmpty) is the most likely one of these to be used. Many commands and plugins require a
selection, and things can go awry if nothing is selected. A user can edit the message that appears when the plugin decides to exit. Here
is the command with its default message that appears when you select the command in Execute Commands:

ExitlfSelection_Empty_cu(Nothing is selected. This plugin will now exit.)

You can change the message by selecting the command in the Command List and pressing Edit Command.
The message should at least explain that the plugin is exiting. This sort of thing is critical if you plan to share
your macros or plugins with other users. If they are only for your own use, you can decide for yourself if you
need the warning.

The other ExitIf messages are essentially the same thing, just checking on different conditions. There are
some, like ExitOrAll_Selection_Empty_ cu(strMessageIfEmpty), that will put up a message box to ask
you if you want to exit if there is no selection, or if you want to select the entire score and then continue.

There is also a small set of routines that will continue, rather than exit, if the selection is either empty or not
empty. These also have a YesNo form. Instead of just continuing or exiting, a YesNo message box comes up,
and the user can decide whether to exit or continue.

ContinuelfSelection_Empty_cu(strMsgExit)
ContinuelfSelection_Empty_YesNo_cu(strMsgYesNoContinue)
ContinuelfSelection_NotEmpty_cu(strMsgExit)
ContinuelfSelection_NotEmpty_YesNo_cu(strMsgYesNoContinue)

The “If Condition” commands

These new commands,

ExitlfConditionFalse_cu(tuplets_selected,The selection does not contain tuplets. This plugin will now exit.)
ExitlfConditionFalse_YesNo_cu(tuplets_selected,The selection does not contain tuplets. This plugin will now exit.)

ExitlfConditionTrue_cu(tuplets_selected,The selection contains tuplets. This plugin will now exit.)
ExitlfConditionTrue_YesNo _cu(tuplets_selected,The selection contains tuplets. This plugin will now exit.)

RunCommand1llfConditionFalseElseCommand2_cu(notes_selected,MessageBox_cu(Commandl1 was
run),MessageBox_cu(Command2 was run),trace_no)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

RunCommand1lfConditionTrueElseCommand2_cu(notes_selected,MessageBox_cu(Commandl was
run),MessageBox_cu(Command2 was run),trace_no)

RunCommandAndEXxitlfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)
RunCommandAndEXxitlfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)

RunCommandIfConditionFalse_cu(notes_selected,MessageBox_cu(Command was run),trace_no)
RunCommandIfConditionTrue_cu(notes_selected,MessageBox_cu(Command was run),trace_no)

are different. These commands allow you to specify a condition name, chosen from a limited set of
conditions, described below, and decide to exit or continue based on whether the condition evaluates to True
or False, or to run additional commands depending on how the condition evaluates.

In one case you can choose 2 commands: one that will be run when the evaluation succeeds, and another that
runs when it fails.

In this example,
ExitlfConditionFalse_cu(tuplets_selected, The selection does not contain tuplets. This plugin will now exit.)

The condition is tuplets_selected, and The selection does not contain tuplets. This plugin will now
exit., separated from the condition by a comma, is a warning message.

If the selection does contain tuplets, the condition will evaluate as True and the plugin will continue. If there
are no tuplets, the condition evaluates as False, warning messages will appear, and the plugin will exit.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Why add conditions? A bit of history

I was considering adding a version of the ExitIf commands that could run a command and then exit if a
“condition” were satisfied. This would be something of the form eventually used by

RunCommandAndExitIfConditionTrue_cu()

However, at the time I did not have separate conditions, and to make this work I would have needed to make
and document modified copies of around 20 ExitIf commands, having a RunCommandAndExitIf...
equivalent for each of them. I was also considering some variants like RunCommandlIf.... and
RunCommandailIf...ElseCommandz2..., each of which would require 20 commands.

This was not practical, so I decided I could make the condition a separate parameter rather than having it be
part of the command name. So instead of having, for example,
RunCommandAndExitIfSelectionEmpty_cu(), I could have
RunCommandAndExitIfConditionTrue_ cu(selection_is_empty...), which takes a condition name as
a parameter instead of having the condition be part of the name. The new command could replace all 20 of the
commands I would need, as long as I could figure out a way to define “conditions”.

I defined the conditions in a separate plugin (Evaluate Plugin Condition), which contained a list of
available condition names. The cmdutils IfCondition commands can call that plugin to evaluate the
condition. New conditions could be added to Evaluate Plugin Condition (by me) if more conditions were
needed in the future, without needing to change emdutils.

I ended up with 10 cmdutils IfCondition commands, which is equivalent to 200 commands if I had not
separated out the conditions.

I considered replacing the existing ExitIf commands with condition-type commands, but decided not to break
existing macros, and that the commands with conditions in the command names were actually easier to work
with than the new ones, since you did not need to find the correct condition name.

I created a set of conditions that would be equivalent to nearly all of the existing ExitIf commands so the
IfCondition commands could be used where the ExitIf commands had been used. I show a mapping of the
ExitIf names to conditions in Appendix 2: Mapping ExitIf commands to use conditions.

Conditions

The conditions available are defined and displayed in the plugin Evaluate Plugin Condition, which must be
installed for these commands to work.

Evaluate Plugin Condition may be run directly so you can see which conditions are available or to test out
new conditions, but you would usually only run it indirectly from one of the IfCondition commands. When
running Evaluate Plugin Condition directly, pressing Evaluate condition will evaluate the condition
selected in the list box and tell you if it currently returns True or False, based most often on what is selected in
the score.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Evaluate Plugin Condition - Version 01.06.10

This plugin is intended to be called by the cmdutils “IfCondition" routines. You can test whether a condition is
working as expected by running this plugin directly; it will put up a message box that shows how the condition
was evaluated.

Most conditions will act on Sibelius.ActiveScore.Selection.

bottom_staff_selected J Evaluate Condition
first_bar_in_score_selected

last_bar_in_score_selected
one_staff_only_selected

passage selection_bars fully selected
selection_contains_only_all_staves_of_grand_staff
selection_contains_bottom staff of grand_staff
selection_contains_only_staves_in_grand_staff
selection contains top staff of grand staff
|selection_contains_notes |
selection _contains_tuplets
selection_is_empty

selection is_empty system_ok
selection_is_passage
selection_is_system_passage
top_staff selected

Trace List

Close

Message X

The condition is evaluated relative to the
current score selection. In this case if there
are selected notes it evaluates to True,

otherwise it evaluates to False. . " i i . . .
Normally these conditions are evaluated for \ Condition "selection_contains_notes" evaluated to "True

other plugins, but you can run Evaluate Plugin
Condition directly to see how the condition
behaves.

OK

There will only be one form of a condition in the list. There may be selection_is_ empty, but not
selection_is_not_empty. There are True and False versions of all the IfCondition commands, so you
could use ExitIfConditionTrue_ cu to exit if selection_is_ empty is True or ExitIfConditionFalse_cu
to exit if selection_is_ empty is False.

Additional conditions could be added to Evaluate Plugin Condition by editing the ManuScript code of the
plugin. A new condition can be added by

1. Add a new condition name to the array dlg_lstConditionNames, preferably in alphabetical order.
2. Add a new case statement to code in API_TestCondition to evaluate the new condition. Return 1 if
the condition is satisfied, o if not.

A few more details and examples can be found in the method How_To_Add_New_Conditions in
Evaluate Plugin Condition , which can be seen by editing Evaluate Plugin Condition. Writing a correct
condition can be tricky, but that is the only real work you would need to do. The ManuScript Language
Reference, available at File>Plug-ins> ManuScript Language Reference, will be your friend, and you
can also peruse the code in other plugins for examples (plugin .plg files are plain text files).

As of August 26, 2024, the available conditions are (“----- ” are visual separators in the list)

dlg_IstConditionNames

{

"bottom_staff selected"
"top_staff_selected"
"first_bar_in_score_selected"
"last_bar_in_score_selected"
"one_staff_only_selected"

"selection_contains_only_all _staves of grand_staff"
"selection_contains_bottom staff_of grand_staff"
"selection_contains_only staves_in_grand_staff"
"selection_contains_top_staff _of grand_staff"
"selection_is_empty"
"selection_is_empty_system_ ok"
"selection_is_passage"
"selection_is_system_passage"

"notes_selected”

"notes_or_rests_selected"

"bar_rests_selected"

"rests_selected"

"rests_or_bar_rests_selected"

"tuplets_selected"
"tuplets_or_child_notes_selected"
"tuplets_or_child_notes_or_rests_selected"
"tuplets_or_child_rests_selected"

"voice_1 objects_selected"
"voice_2_objects_selected"

"voice_3 objects_selected"

"voice_4 objects_selected”

}

If a macro or plugin runs an IfCondition command with an invalid condition name, the error message will
display all the valid condition names.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

0‘ The parameter string
WY xxx_selection_contains_notes,MessageBox_cu(Command was
run),trace_no for ExiflfCondition_cu is not valid. The condition name

must be a value from this list:

{
"bottom_staff_selected"
"first_bar_in_score_selected"
"last_bar_in_score_selected"
"one_staff_only_selected”
"passage_selection_bars_fully_selected"
"selection_contains_only_all_staves_of_grand_staff"
"selection_contains_bottom staff_of_grand_staff"
"selection_contains_only_staves_in_grand_staff"
"selection_contains_top_staff_of_grand_staff"
"selection_contains_notes"
"selection_contains_tuplets"
"selection_is_empty"
"selection_is_empty_system_ok"
"selection_is_passage”
"selection_is_system_passage"
"top_staff_selected"

The “ExitIfCondition” Commands

ExitlfConditionFalse_cu(condition,message)
ExitlfConditionFalse_YesNo_cu(condition,message)

ExitlfConditionTrue_cu(condition,message)
ExitlfConditionTrue_YesNo_cu(condition,message)

These commands evaluate a condition, and based on the results, will make the plugin exit or continue. On exit
these will put up a message box.

The “RunCommandIfCondition” Commands
RunCommand1llfConditionFalseElseCommand2_cu(condition,commandl,command2,traceNoYes)

RunCommand1lfConditionTrueElseCommand2_cu(condition,commandl,command2,traceNoYes)

RunCommandAndExitlifConditionFalse_cu(condition,command,traceNoYes)
RunCommandAndExitlfConditionTrue_cu(condition,command,traceNoYes)

RunCommandIfConditionFalse_cu(condition,command,traceNoYes)
RunCommandIfConditionTrue_cu(condition,command,traceNoYes)

These commands evaluate a condition, and based on the results, will run a command before returning. These
commands can be Sibelius commands, cmdutils commands, or plugins. Plugins could be very useful as
commands to be run. You can also use the cmdutils routine RunMacro__cu to run a macro .dat file.

The condition name must be spelled exactly the same as a condition in the plugin Evaluate Plugin
Condition. The command name must be a valid command name. I suggest using Execute Commands to enter
the command you want to run into the Command List following the RunCommand... command, then cut the
command name, use Edit Command to edit the RunCommand... command, and replace the placeholder
command name with the one you had cut, which will now be in the clipboard.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

In the “placeholder parameters” for these commands, the condition is “notes_selected” and the command to
be run is “MessageBox_ cu(Command was run)”. These placeholders will do no harm if a user forgets to
update the parameters.

The parameter traceNoYes can only be one of the 2 strings (not in quotes): trace_no (the default) or
trace_yes. Use trace_yes if you are debugging the command and want to see some traced debug data. In a
finalized command, this parameter should always be trace_no.

When you set up one of these commands you need to spell the condition and any command names exactly, or
the command will return an error message and cause the running plugin or macro to exit.

The command that is run can be one that will cause the plugin to exit. In the simplest case, you can run the
command ExitPlugin_ cu(). In a more complex case, you can create a plugin that includes either

ExitPlugin();

or

cmdutils.ExitPlugin_cu();

either of these should cause the entire plugin to exit. You can instead use one of the commands

RunCommandAndExitlifConditionFalse_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)
RunCommandAndExitlifConditionTrue_cu(notes_selected,MessageBox_cu(Command was run - will exit),trace_no)

which will run a command and then exit. That way you don’t need to write a new plugin to force the plugin to
exit but can run an ordinary command and let the RunCommandAndExit command handle the exit. An
example of this could be if you wanted to clear the selection before exiting if a condition fails.

RunCommandIfConditionFalse_cu(condition,command,traceNoYes)
RunCommandIfConditionTrue_cu(condition,command,traceNoYes)
e runs the specified command if the condition evaluates to False or True, then allows the plugin or macro to continue.

RunCommandAndExitlIfConditionFalse_cu(condition,command,traceNoYes)
RunCommandAndExitIfConditionTrue_cu(condition,command,traceNoYes)

e runs the specified command if the condition evaluates to False or True, then exits the plugin or macro.

RunCommand1llfConditionFalseElseCommand2_cu(condition,commandl,command2,traceNoYes)
RunCommand1l1lfConditionTrueElseCommand2_cu(condition,commandl,command2,traceNoYes)

e These supply 2 commands. Command1 will run if the condition evaluates as desired (True for the True form, False for the False
form). Command 2 will run otherwise. This is a crude form of an if-then-else mechanism, which could provide much more
control over a plugin sequence than was previously possible.

RunCommandIf Examples

RunCommandIfConditionTrue_cu(selection_is_empty,MessageBox_cu(Nothing is selected),trace_no)

If the selection is empty, the command MessageBox_ cu will be run, which will put up a warning message.
The plugin will then continue, and not find anything to process.

RunCommandAndExitlifConditionTrue_cu(notes_selected, select_none,trace_no)

If the selection contains notes, the command select_none will be run, which will clear the selection.
The plugin will then exit. If no notes had been selected, the plugin continues.

RunCommand1llfConditionFalseElseCommand?2_cu(tuplets_selected,PluginNoTuplets.plg,PluginTuplets.plg,trace_no)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Here the commands called are 2 plugins, and this command is acting as a switcher. If the selection does not
contain tuplets (the False command form is being used), the command PluginNoTuplets.plg will be run. If
tuplets had been selected, the command PluginTuplets.plg will be run. In either case, the original plugin
will continue, unless one of the called plugins calls ExitPlugin(). I would expect that if you were using this
command as a switcher then it would be the last command in the calling plugin or macro, so it would terminate
immediately when control returned to it.

In some cases, you will need to write a custom plugin to serve as the command that is to be called, because the
existing commands may not be able to do enough. But I think there can be interesting possibilities here.

To use these commands, you will need the latest versions of these plugins:
¢ Execute Commands
e cmdutils
¢ Evaluate Plugin Condition

Install them (once available) using File>Plug-ins>Install Plug-ins. You will need to close and restart

Sibelius before you use these new plugins, even though you usually do not need to do that when using the
installer.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Appendix 1: examples of the ManuScript code used to evaluate conditions (TECHNICAL)
In case you are interested in adding additional conditions to the plugin (for your own use)

Each condition in Evaluate Plugin Conditions is evaluated by adding a case statement to the switch
statement in the method API_TestCondition in the plugin Evaluate Plugin Condition.

The name used in the case() statememt must match exactly an entry in the array dlg_lstConditionNames.
The names are English-only.

The case statement should return 1 if it evaluates to True, and o (zero) if evaluating to False.

Here is a simple example that checks whether the selection is a passage selection

case ("selection_is_passage")
if (selection.IsPassage)

return 1; // condition met

}

return O;

}

Most of the other conditions in API_TestCondition reproduce the conditions implicitly used in the cmdutils
ExitIf commands, and they call code in cmdutils to do the work. Here is code for the condition
"one_staff only_selected".

case ("one_staff_only_selected")

{
fRequireOneStaff = True;

fRequireFullSelect = False;
valRequireGrandStaff = 0; // not used
strMessageln = "not_used";

/ITestSelection... will convert to a passage selection temporarily if we start with a non-passage selection

strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageln, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
if (strMessageOut = ")

{

return 1,

}

return O;

}

There will certainly be simpler ways to implement these conditions, but in this case I wanted these conditions
to match the results of the comparable cmdutils ExitIf routine - in this example,
ExitIfSelection_Needs_OneStaff_cu, whose code is pretty much exactly the same as this case statement.
If you are writing your own conditions, you will not be restrained in the same way, and you can write any code
you want, as long as it returns 1 for True, and zero for False.

You can also call into the cmdutils routines if you like, but it can be a bit challenging.
Another source for condition-like code in Filtering plugins, especially something like Filter With Deselect,
which has lots of filters. In Filter With Deselect , API_ProcessObjects is the main object processing loop,

and for each selected object it calls IsDesiredObject, where the analogue of the condition is defined. You can
find a lot of good models for new conditions in that code.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Appendix 2: Exactly what the conditions test

Here is the actual code in the plugin Evaluate Plugin Conditions that evaluates conditions as of this writing
(September 12, 2024)

This is described somewhat in the previous appendix, but here is the main Switch statement in
API_TestCondition.

A number of conditions, such as "bottom_ staff selected", mimic what non-condition emdutils commands do,
and these end up calling code in the cmdutils plugin. Some, like “tuplets_selected”, arer straightforward
ManuScript code, as:

case ("tuplets_selected")
for each Tuplet tup in selection

return 1; // condition met

}

return O;

}

If you really need to find exactly what the condition looks at edit the plugin Evaluate Plugin Conditions,
look in the routine API_TestCondition, and if the code in the switch statement calls other routines, find
those routines and analyze them until you get to the lowest level. All the plugins that are called can be edited
using File>Plug-ins>Edit Plug-ins. Just be careful not to change anything unless you are confident that you
know what you are changing.

That said, here is the essential conditions code:

switch (strConditionName)

{

case ("bottom_staff_selected”)

{
arrOptions[0] = 1; // fTopStaffSelected
arrOptions[1] = 0; // fBottomStaffSelected
arrOptions[2] = 0; // fFirstBarSelected
arrOptions[3] = 0; // fLastBarSelected
arrOptions[4] = 0; // fGrandStaffTopSelected,;
arrOptions[5] = 0; // fGrandStaffBottomSelected

valRet = TestObjectsSelected(score, selection, arrOptions);
return valRet;

case ("first_bar_in_score_selected")

{
arrOptions[0] = O; // fTopStaffSelected
arrOptions[1] = 0; // fBottomStaffSelected
arrOptions[2] = 1; // fFirstBarSelected
arrOptions[3] = 0; // fLastBarSelected
arrOptions[4] = 0; // fGrandStaffTopSelected;
arrOptions[5] = 0; // fGrandStaffBottomSelected

valRet = TestObjectsSelected(score, selection, arrOptions);
return valRet;

case ("last_bar_in_score_selected")

{

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

arrOptions[0] = O; // fTopStaffSelected
arrOptions[1] = 0; // fBottomStaffSelected
arrOptions[2] = 0; // fFirstBarSelected
arrOptions[3] = 1; // fLastBarSelected
arrOptions[4] = 0; // fGrandStaffTopSelected;
arrOptions[5] = 0; // fGrandStaffBottomSelected

valRet = TestObjectsSelected(score, selection, arrOptions);
return valRet;
}
case ("one_staff_only_selected")
{
fRequireOneStaff = True;
fRequireFullSelect = False;
valRequireGrandStaff = 0; // not used
strMessageln = "not_used";

/ITestSelection... will convert to a passage selection temporarily if we start with a non-passage selection

strMessageOut = cmdutils. TestSelection_Needs_Full(score, selection, strMessageln, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
if (strMessageOQut = ")
{
return 1,
}

return O;

}

case ("passage_selection_bars_fully_selected")

fRequireOneStaff = False;
fRequireFullSelect = True;
valRequireGrandStaff = 0; // not used
strMessageln = "not_used";

strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageln, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);

if (strMessageOut = ")

{

return 1;

}

return O;

case ("selection_contains_only_staves_in_grand_staff")
{
fRequireOneStaff = False;
fRequireFullSelect = False;
valRequireGrandStaff = 3; //only staves from a single Grand Staff
strMessageln = "not_used";

strMessageOut = cmdutils.TestSelection_Needs_Full(score, selection, strMessageln, fRequireOneStaff, fRequireFullSelect,
valRequireGrandStaff);
if (strMessageOut = ")

return 1;

}

return O;
}
case ("selection_contains_only_all_staves_of grand_staff")
{

fRequireOneStaff = False;

fRequireFullSelect = False;

valRequireGrandStaff = 4; // all staves required

strMessageln = "not_used";

strMessageOut = cmdutils. TestSelection_Needs_Full(score, selection, strMessageln, fRequireOneStaff, fRequireFullSelect,

valRequireGrandStaff);
if (strMessageOut = ")

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

{

return 1;

}

return O;

case("selection_contains_bottom staff_of _grand_staff")

{
arrOptions[0] = 0; // fTopStaffSelected

arrOptions[1] = 0; // fBottomStaffSelected
arrOptions[2] = 0; // fFirstBarSelected
arrOptions[3] = 0; // fLastBarSelected
arrOptions[4] = 0; // fGrandStaffTopSelected;
arrOptions[5] = 1; // fGrandStaffBottomSelected

valRet = TestObjectsSelected(score, selection, arrOptions);
return valRet;

}

case("selection_contains_top_staff_of_grand_staff")

{
arrOptions[0] = 0; // fTopStaffSelected

arrOptions[1] = 0; // fBottomStaffSelected
arrOptions[2] = 0; // fFirstBarSelected
arrOptions[3] = 0; // fLastBarSelected
arrOptions[4] = 1; // fGrandStaffTopSelected,;
arrOptions[5] = 0; // fGrandStaffBottomSelected

valRet = TestObjectsSelected(score, selection, arrOptions);
return valRet;

case ("notes_selected")
for each Note n in selection

return 1; // condition met

}

return O;

}

case ("notes_or_rests_selected")
for each NoteRest nr in selection

return 1; // condition met

}

return O;

}

case ("bar_rests_selected")
for each BarRest br in selection

return 1; // condition met

}

return O;

}

case ("rests_selected")
for each NoteRest nr in selection
if (nr.NoteCount = 0)

return 1; // condition met

}
}

return O;
}

case ("rests_or_bar_rests_selected")

for each NoteRest nr in selection

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

{
if (nr.NoteCount = 0)

return 1; // condition met

}
}

for each BarRest br in selection
return 1; // condition met

}

return 0;
}
case ("tuplets_selected")
for each Tuplet tup in selection

return 1; // condition met

}

return O;
case ("tuplets_or_child_notes_or_rests_selected")
for each Tuplet tup in selection
return 1; // condition met
ior each NoteRest nr in selection

if (nr.ParentTupletlfAny != null) // note/chord or rest ok

return 1; // condition met

}
}

return 0;
case ("tuplets_or_child_notes_selected")
for each Tuplet tup in selection
return 1; // condition met
for each NoteRest nr in selection
if (nr.ParentTupletIfAny != null)
if (nr.NoteCount != 0) // note or chord but not rest

return 1; // condition met

}
}
}

return O;
}
case ("tuplets_or_child_rests_selected")
for each Tuplet tup in selection
return 1; // condition met
}
for each NoteRest nr in selection
if (nr.ParentTupletIfAny != null)
if (nr.NoteCount = 0) // rest not notes or chords

return 1; // condition met

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

}
}
}

return O;

case ("selection_is_empty")

{

fIncludeSystemStaff = False;

fNoteRestRequired = False;

val = TrueFalseAsNumber(cmdutils.ISEmptySelection_Full(score, selection, fincludeSystemStaff, fNoteRestRequired));
return (val);

}

case ("selection_is_empty_system_ok")

fIncludeSystemStaff = True;

fNoteRestRequired = False;

val = TrueFalseAsNumber(cmdutils.ISEmptySelection_Full(score, selection, fincludeSystemStaff, fNoteRestRequired));
return (val);

case ("selection_is_passage")
if (selection.IsPassage)

return 1; // condition met

}

return O;
case ("selection_is_system_passage")
if (selection.IsSystemPassage)

return 1; // condition met

}

return O;

}

case ("top_staff_selected")

{
arrOptions = CreateArray();
arrOptions[0] = 1; // fTopStaffSelected
arrOptions[1] = 0; // fBottomStaffSelected
arrOptions[2] = 0; // fFirstBarSelected
arrOptions[3] = 0; // fLastBarSelected
arrOptions[4] = 0; // fGrandStaffTopSelected,;
arrOptions[5] = 0; // fGrandStaffBottomSelected

valRet = TestObjectsSelected(score, selection, arrOptions);
return valRet;

}

case ("voice_1 objects_selected")

valRet = (VoiceSelected(selection, 1));
/ltrace("API_TestCondition VoicelSelected valRet: " & valRet);
return valRet;

}

case ("voice_2_objects_selected")

return(VoiceSelected(selection, 2));

}

case ("voice_3_objects_selected")

{

return(VoiceSelected(selection, 3));
}

case ("voice_4 objects_selected")

return(VoiceSelected(selection, 4));

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

}

case ("voice_1_selected") // the next 4 statements are here only to support macros made before the commands were renamed

valRet = (VoiceSelected(selection, 1));
[ltrace("API_TestCondition VoicelSelected valRet: " & valRet);
return valRet;

}

case ("voice_2_selected")

{

return(VoiceSelected(selection, 2));

}

case ("voice_3_selected")

return(VoiceSelected(selection, 3));

}

case ("voice_4 selected")

{

return(VoiceSelected(selection, 4));
}
b

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Appendix 3: Mapping ExitIf commands to use conditions

I mentioned above that I set up conditions so they could do the equivalent of the existing ExitIf commands. It is
a bit tricky to map the ExitIf name to the appropriate condition and ExitIfConditionTrue/False command. You
need to choose both the condition and the appropriate True/False form of the command.

Here is how they are related:

Exit or Continue If Command

Equivalent using <condition>

ContinuelfSelection_ Empty_cu()

ExitIfConditionFalse_cu(selection_is_empty,<msg>)

ContinuelfSelection_ Empty_YesNo_cu()

ExitIfConditionFalse_YesNo_cu(selection_is_empty,<msg>)

ContinuelfSelection_ NotEmpty_cu()

ExitIfConditionTrue_ cu(selection_is_empty,<msg>)

ContinuelfSelection_ NotEmpty_YesNo_ cu()

ExitIfConditionTrue_YesNo_ cu(selection_is_empty,<msg>)

//ExitIfPlugin_Unavailable_cu()

No equivalent

ExitIfSelection_Avoid_ BottomStaff cu\()

ExitIfConditionTrue_cu(bottom_staff selected,<msg>)

ExitIfSelection_Avoid_ FirstBar_cu()

ExitIfConditionTrue_ cu(first_bar_in_score_selected,<msg>)

ExitIfSelection_Avoid_ GrandStaff Top_cu()

ExitIfConditionTrue_cu(selection_contains_top staff of grand_staff,<msg>)

uQ)

ExitIfSelection_Avoid_GrandStaff Bottom_c

ExitIfConditionTrue_ cu(selection_contains_bottom staff of grand_ staff,<msg>)

ExitIfSelection_Avoid_LastBar_cu()

ExitIfConditionTrue_cu(last_bar_in_score_selected,<msg>)

ExitIfSelection_Avoid_TopStaff_cu()

ExitIfConditionTrue_cu(top_staff selected,<msg>)

ExitlIfSelection_ Empty_cu()

ExitIfConditionTrue_ cu(selection_is_empty,<msg>)

ExitIfSelection_ Empty_SystemOK_cu()

ExitIfConditionTrue_ cu(selection_is_empty_system_ok,<msg>)

ExitIfSelection_Needs_FullSelect_cu()

ExitIfConditionFalse_cu(passage_selection_bars_fully_selected,<msg>)

ExitIfSelection_Needs_GrandStaff All_cu()

ExitIfConditionFalse_cu(selection_contains_only_all_staves_of grand_ staff,<ms
g>)

ExitIfSelection_Needs_GrandStaff Any_cu()

ExitIfConditionFalse_cu(selection_contains_only_staves_in_grand_ staff,<msg>)

ExitIfSelection_Needs_OneStaff cu()

ExitIfConditionFalse_cu(one_staff only_selected,<msg>)

ExitIfSelection_NotPassage_cu()

ExitIfConditionFalse_cu(selection_is_passage,<msg>)

ExitIfSelection_ NotEmpty_cu()

ExitIfConditionFalse_cu(selection_is_empty,<msg>)

ExitOrAll_Selection_Empty_cu()

No equivalent*

ExitOrAll_Selection_Empty_SystemOK_cu()

No equivalent*

ExitOrAll_Selection_NotPassage_cu()

No equivalent*

//ExitPlugin_cu()

No equivalent

* These commands can be simulated with a fair bit of work.
ExitOrAll_Selection_ Empty_ cu(), for example, does this:

e Checks if selection is empty.

o If not, it returns without exiting

o Ifempty

* Put up a YesNo message box asking the user to exit (No) or to select all and continue

(Yes)

Continue if no selection?

commands anyway.

Execute Commands: There is no selection in the active score, and running a
macro may do nothing. Choose "No" to cancel or "Yes" to execute the

[] Do not show warning (for this Sibelius Session)

Yes No

If No, the plugin exits

If Yes, the plugin passage selects (not a system passage selection, just the blue box) the
entire score and then continues/does not exit.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

One could approach this by using
RunCommandIfConditionTrue_cu(selection_is_empty,<command>,trace_no)

If the selection is empty, it will run the command, if not, it will just continue. What would be needed would be a
command that would put up the message box, exit on No, and if Yes, passage select all and continue.

There is no existing command that would do this, so you would likely need to write a small ManuScript plugin
to do this. You could use the code in cmdutils.ExitOrAll_Selection_ Empty_cu() as a model, but it is
probably more trouble than it’s worth. Just use ExitOrAll_Selection_ Empty_ cu().

What works well in this situation is to have 2 commands. One will test the condition and put up a message box
to provide a warning but will not run a functional command or exit. The next will check the same condition and
if True will run a real command and then exit.

This effectively gives the IfCondition commands a mechanism to warn before exiting.

In the following example, if notes are selected, the first command will just put up a message box and stop. The
second command will test the same condition and will clear the selection and exit.

If the condition had evaluated to False, neither command would have performed any action.
RunCommandIfConditionTrue_ cu(notes_selected,MessageBox_ cu(Exiting because selection
contains notes),trace_no)

RunCommandAndExitIfConditionTrue_ cu(notes_selected,Select All,trace_no)

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Appendix 4: Equivalent non-condition commands

If there is no available condition for what you want, you can sometimes use Filters to accomplish what you
need.

This is pretty intense, so feel free to skip it.

You may have been using something like this:
RunCommandAnd ExitIfConditionTrue_ cu(tuplets_selected,<command>,trace_no)

Which would run <command> and then exit if the selection contained tuplet objects. Say that you
wanted to test for tuplet objects or notes/chords that were children of tuplets, and there was no condition that
could test this, but there was a filter that would filter for tuplet objects or notes/chords that were children of
tuplets.

You could save the selection, then run a filter, and test for whether anything had been selected.

If nothing were selected, i.e., the selection was empty, no such tuplets or notes would be selected, so we would
want to restore the original selection and continue. If the selection were not empty, we would want to restore
the original selection, run the specified command, and exit.

The details of this are tricky, so pause a moment to be sure it makes sense.

Note that Saving and Restoring a selection works well for a passage selection but will not restore the
selection in a non-passage selection if any of the selected objects were changed or added or deleted. You really
need to understand what is happening to the selection to make this work.

In this example, we will not change any selected objects, so it will work even with a non-passage selection.

Let us deal with the worst case and start with a non passage selection. For a filter, we could run any Sibelius
filtering command, such as filter_nonspecial_barlines. This gives you access to all the filters on
Home>Filters. You could also run any filtering plugin, ideally one that does not bring up a dialog. For some
more complex filters, you could write your own filtering plugin using one of the Custom Filter plugins as a
template. You may find useful options in the Filter Other or Filter With Deselect plugins, and for these
you could use the New Plugin... button to generate a command line for a single filter with no dialog.

In this example we will use the plugin Filter Other and have it generate a command line for Tuplets and
Notes Under Tuplets with the New Plugin... button.

Not a tuplet
child

Tuplet
Children

<10 N
0 » |2
y” i N | N] i *37
GE===_—Scice
e Log L_g:2) LM L5:4

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Filter Other - Version 03.26.00 - by Bob Zawalich

Object to Filter Choose the type of object to filter. If appropriate, type or select a style name.
Bars With Chord Symbols *** Choose Select or Deselect to continue.
Bars With Lyrics Previously, only "All text
tyles” ilabl
Bars With Notes In Multiple Voices Technigue styles” was avariable
Clefs
Colored Notehead Styles Technique The settings of these 3

checboxes will be saved
across Sibelius sessions

Colored Objects

Cue Size Objects Show number of objects found (this session)

thzzsnz:eze“ Dynamics Trace object locations New option as of version
Hidden Objects (not ~) [Restore original selection if no matches were madeg T2

Key Signature Changes

MIDI messages [] Do not show this dialog (this Sibelius session) New Plugin...

Magnetic Layout Settings
Note Pitch (chromatic written) Cancel Deselect
Noteheads

Notes By Duration

Notes By Number of Notes
Notes In Parentheses
Notes On Staff Lines

|Notes Under Tuplets |

Notes With Accidentals¥p Parentheses
Notes With Cautionary Acsjdentals
Notes With Hidden Accidents
Notes With Normal Accidental?
Notes With Slide

Notes With Visible Accidentals
Quartertones

Special Barlines

Symbols Available tuplet-
Text Styles related options
Tied Notes (with LV tie)

Tied Notes (with normal tie)
Tied Notes (with tie-into tie)
Time Signatures

I Tuplets Plus Notes Under Tuplets |

Here is the dialog that appears when you press New plugin... and tell it to append the command line to the
Execute Command Command List:

New Plugin / Append to Command List

You can generate a custom plugin that runs the command line that has just been traced.

You can also add the command line to the Command List used by the plugin Execute Commands. The added
command line will be at the bottom of the Command List the next time Execute Commands is run.

If you generate a plugin you will be given a chance to review and edit the new plugin location and name. You can
just press OK/Enter in that dialog to accept the default name and location.

If you generate a plugin you will need to close and restart Sibelius before you can use it.

Current command line:

RunPluginEntry_cu(FilterOther.plg, API_ProcessObjects, str_Action, select, str_FilterType, Tuplets Plus Notes Under
Tuplets, str_StyleName, None, str_fRestoreSelection, no, str_fShowResults, yes, str_fTraceLocation, yes)

[] Generate a new plugin from the command line

| EAppend the command line to the Command List in Execute Commandsé

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

Here is what the Command List in Execute Commands would look like.

| Add Command To Command List ¥ | k 29
Hover with mouse to see -
Remove selected command W Remove All ¥ full string, or
[RunP\ug\'nEntryicu(F\IlerOlher,p\g, AP|_ProcessObjects, str_Action, sele... [(

I I I 1

| RunPluginEntry_cu(FilterOther.plg, API_ProcessObjects, str_Action, select, str_FilterType, Tuplets Plus Notes Under Tuplets, str_StyleName, None, str_fRestoreSelection, no, str_fShowResults, yes, str_fTraceLocation, yes) ‘ |
= P

—
= T T Ll 4

Up A Down'¥ Trace List &
Export List & ... Import List & ...
| Edit command A... | Paste command... A

Let’s pause here for a moment and regroup. Here is the plan: we are simulating the following instruction with
a slightly different condition, so we can also process selected notes that are children of tuplets:

RunCommandAnd ExitIfConditionTrue_ cu(tuplets_selected,<command>,trace_no)
Here we go.

1. Call SaveSelection_ cu so we can restore the original selection later
Run the generated filter command, which will filter tuplets or notes under a tuplet. This will often
change the selection. If no tuplets or tuplet notes were selected, the selection will be empty.
a. Here is the description of the problem to be solved, from above:

“You could then test whether the selection had been empty or not. If empty, no such tuplets or notes
would be selected, so we would want to restore the original selection and continue. If the selection were not
empty, we would want to restore the original selection, run the specified command, and exit.”

One needs to think carefully about this. The appropriate condition we have is “selection_is_empty”. If the
selection is empty, then no tuplets or notes under tuplets were found. We want to exit if such objects were
found, so we will use the False form of the RunCommandIfCondition command

As in the example above, we might want to put up a messages box explaining why we are exiting, so add this
command, which tests the same condition as the Exit command, but if the condition returns False if will just
put up a message box.

3. RunCommandIfConditionFalse_cu(selection_is_empty,MessageBox_cu(Exiting because
selection contains tuplets or notes inside tuplets),trace_no)

4. RunCommandAndExitIfConditionFalse_ cu(selection_is_empty,RestoreSelection_cu(),t
race_no)
a. we will want to restore the selection and exit if the filtered selection is not empty, so we run the
instruction above. If we do not exit, we want to restore the selection and continue.
5. RestoreSelection_cu()
6. So here is the set of instructions we want:

SaveSelection_cu()

RunPluginEntry_cu(FilterOther.plg, APl_ProcessObijects, str_Action, select, str_FilterType, Tuplets Plus Notes Under Tuplets,
str_StyleName, None, str_fRestoreSelection, no, str_fShowResults, yes, str_fTraceLocation, yes)
RunCommandIfConditionFalse_cu(selection_is_empty,MessageBox_cu(Exiting because selection contained tuplets or notes inside
tuplets),trace_no)

RunCommandAndExitifConditionFalse_cu(selection_is_empty,RestoreSelection_cu(),trace_no)

RestoreSelection_cu()

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

To be sure it is actually working correctly, I often add an ExitPlugin() command into the Command List, and
slide it up and down so I can see the results at various points in the command execution.

Often, just because the final result is correct, it does not prove that the processing was correct. This is the life of
a programmer...

Add Command To Command List ¥

Remove selected command ¥ Remove All ¥

SaveSelection_cu()

RunPluginEntry cu(FilterOther.plg, APl _ProcessObjects, str_Action, sele...
RunCommandlfConditionFalse_cu(selection_is_empty,MessageBox cu(...
ExitPlugin_cu()
RunCommandAndExitlfConditionFalse_cu(selection_is_empty,RestoreS...
RestoreSelection_cu()

Here is the original selection again. Assume the ExitPlugin_ cu() command is not present.

Tuplet s

Children r
<10 K
f) - | : -
*) I g } o e e
G c— S S i
e Log /] L_g:2] T La6M- L5:4

We see this message box after the filter. Note that the selection at this point includes only the notes in the
tuplets, as expected.

P

Message X

1

0 Exiting because selection contained tuplets or notes inside tuplets

=
oK 7

';" o o ® 4
¥ [y 2 o <« Y oy v w e o
e ' e ¢ LT L%
= C32i T w63 | o

When we OK the message box, the selection should be restored to the original, and it is. Here is the final result.
The original selection is restored, as expected.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

(3) Plug-in Trace

Object type: NoteRest bar: 11 position: 1 staff: 1 - Piano page:
Object type: NoteRest bar: 11 position: 3 staff: 1 - Piano page:

Avoid these trace
messages by turning off
Filter Other: results for score F:_ Scores\ Sib 8 score the Filter Other
q 2 Tuplets Plus Notes Under Tuplets selected checkboxes when
generating the command
line.

__ . »
AN AN
F I 2 o« e
& & of [
ALY Y ’
L_g:2) I Lg:6)-

In this case, neither RunCommandIf command will run commands or exit. The filter would have left an

empty selection, but the last command, RestoreSelection_ cu() will be run, so the selection appears to be
unchanged.

n N -IP- N ﬂ L—q
4 | 4 & V o e e ey e o e g
o+ R A e
© La3, L3:2] L 4:6)- L5:40H L\ —7:40—
@ Plug-in Trace X

Filter Other: results for score F:\ Scores\ Sib 8 scores\tremolo test
filter other.sib

0 Tuplets Plus Notes Under Tuplets selected

Since the selection was unchanged, this was a case where I wanted to make sure the score was correct at an

intermediate stage, so I added an ExitPlugin() command after the filter to show the state of the score after the
filter:

‘ Add Command To Command List ¥ |

Remove selected command ¥ Remove All ¥

SaveSelection_cu()

RunPluginEntry_cu(FilterOther.plg, API_ProcessObjects, str_Action, sele...

nditionFalse_cu(selection_is_empty,MessageBox_cu(...
ExitPlugin_cu()
RunCommandAndExitifConditionFalse_cu(selection_is_empty,RestoreS...
RestoreSelection_cu()

In this example, the selection was empty after the filter, as expected. When I removed the ExitPlugin_cu()
call, the selection was restored at the end, again as expected.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\CMDUTILS\IF CONDITION COMMANDS IN CMDUTILS AND EXECUTE COMMANDS.DOCX PAGE

