

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 1 JUNE 6, 2025

Translating a possibly AI Generated Sibelius plugin to ManuScript

Bob Zawalich May 17, 2025

Contents

Translating a possibly AI Generated Sibelius plugin to ManuScript .. 1

Translating the plugin ... 3

Getting a folder containing scores ... 4

Iterating through the Sibelius files .. 5

Processing SystemTextItem objects in the opened score ... 6

Saving, Closing, and saying goodbye ... 7

Making a plugin that uses this code. ... 9

This was a post in the Facebook Sibelius Power users group from Alisdair MacRae Birch on May
14, 2025. Here is a link to the post:

https://www.facebook.com/groups/323691061147132/posts/2868792213303658/

Help/Advice Needed: How to Hide Text Elements in Multiple Scores - Sibelius Plugin?
I've been trying to write a plugin that processes a folder of Sibelius scores and hides specific text
elements, including Title, Subtitle, Composer, Lyricist, Arranger, and Footer. I'm not well versed in
sibelius plugins and encountering some challenges and would appreciate any guidance or advice. Is
there another way? Can anyone help?

Here is the code, from another comment. I fixed the indentation but changed nothing else

PluginMethod Run()
{
// Prompt user for folder location
folderPath = Sibelius.FileBrowser("Select a folder containing Sibelius files", "", true);
if folderPath = "" then
{
 Sibelius.MessageBox("No folder selected. Operation cancelled.");
 return;
}
// Get list of .sib files in the folder
fileList = Sibelius.GetFileList(folderPath);
if Length(fileList) = 0 then
{
 Sibelius.MessageBox("No Sibelius files found in the selected folder.");
 return;
}
// Iterate through each Sibelius file
for i = 0 to Length(fileList) - 1
{
 sibFile = Sibelius.Open(fileList[i]);
 if sibFile = NULL then
 {
 Sibelius.MessageBox("Unable to open " & fileList[i]);

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 2 JUNE 6, 2025

 continue;
 }
 textItems = sibFile.GetAllObjects("Text");
 for j = 0 to Length(textItems) - 1
 {
 if textItems[j].TextStyle = "Title" then
 {
 textItems[j].Visible = false;
 }
 }
 sibFile.Save();
 sibFile.Close();
}

Sibelius.MessageBox("Operation complete! Title text items are hidden in all files.");
}

It is clear to me that it is not written in ManuScript, though it is close. It may not have been AI
generated, but I have no other guess for where it might have come from. I have seen other plugins that
were generated by AI that used similar syntax.

Since this was short, I thought I might try translating it into ManuScript just to see if the algorithms
worked.

Here are some of the deviations in this code from ManuScript. I am referring to these things as if I
were looking at a .plg file in a text editor.

• PluginMethod Run()
o A Run method would start with

▪ Run "() {
o And end with

▪ }”

• If statement syntax, e.g., if folderPath = "" then

o In ManuScript, an if else statement has the syntax

• The statement is an if enclosed in parentheses, and there is no “then” keyword

• These methods and variables do not exist or use different syntax in Sibelius, though similar
ones are available:

o Sibelius.FileBrowser
o Sibelius.GetFileList
o GetAllObjects
o Length(fileList)
o sibFile.Save();
o sibFile.Close();
o textItems[j].TextStyle
o textItems[j].Visible

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 3 JUNE 6, 2025

o continue
o Return needs a parameter, most commonly True or False
o Sibelius.Open is close, but it takes a file name, not a file object as its parameter.

• The Sibelius.MessageBox instructions are correct.

So pretty much every line needs to be changed, but if we treat this as something written in a different
language, it looks pretty reasonable.

Translating the plugin

I started with mechanical changes, such as making the if and return statements work. The changed
text is marked in bold below.

I marked routines that do not exist or have incorrect syntax in red.

// Prompt user for folder location
folderPath = Sibelius.FileBrowser("Select a folder containing Sibelius files", "", true);
if (folderPath = "")
{
 Sibelius.MessageBox("No folder selected. Operation cancelled.");
 return False;
}
// Get list of .sib files in the folder
fileList = Sibelius.GetFileList(folderPath);
if (Length(fileList) = 0)
{
 Sibelius.MessageBox("No Sibelius files found in the selected folder.");
 return False;
}
// Iterate through each Sibelius file
for i = 0 to Length(fileList) - 1
{
 sibFile = Sibelius.Open(fileList[i]);
 if (sibFile = NULL)
 {
 Sibelius.MessageBox("Unable to open " & fileList[i]);
 continue;
 }
 textItems = sibFile.GetAllObjects("Text");
 for j = 0 to Length(textItems) - 1
 {
 if textItems[j].TextStyle = "Title" then
 {
 textItems[j].Visible = false;
 }
 }
 sibFile.Save();
 sibFile.Close();
}

Sibelius.MessageBox("Operation complete! Title text items are hidden in all files.");

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 4 JUNE 6, 2025

Getting a folder containing scores

Here are the first 2 blocks of code

folderPath = Sibelius.FileBrowser("Select a folder containing Sibelius files", "", true);
if (folderPath = "")
{
 Sibelius.MessageBox("No folder selected Operation cancelled.");
 return False;
}

// Get list of .sib files in the folder
fileList = Sibelius.GetFileList(folderPath);
if (Length(fileList) = 0)
{
 Sibelius.MessageBox("No Sibelius files found in the selected folder.");
 return False;
}

Sibelius.SelectFolder is a direct replacement for FileBrowser. It returns a folder object rather
than a path name, so it is checked for null rather than for an empty string.

folderMain = Sibelius.SelectFolder ("Select a folder containing Sibelius files");
if (folderMain = null)
{
 Sibelius.MessageBox("No folder selected. Operation cancelled.");
 return False;
}

Checking whether the folder has .sib files is similar to the original code

numFiles = folderMain.FileCount ("SIB");
if (numFiles = 0)
{
 Sibelius.MessageBox("No Sibelius files found in the selected folder.");
 return False;
}

Replacing the original code for these blocks, we now have this, where the new code is shown in green

// Prompt user for folder location

folderMain = Sibelius.SelectFolder ("Select a folder containing Sibelius files");
if (folderMain = null)
{
 Sibelius.MessageBox("No folder selected. Operation cancelled.");
 return False;
}

numFiles = folderMain.FileCount ("SIB");
if (numFiles = 0)
{
 Sibelius.MessageBox("No Sibelius files found in the selected folder.");
 return False;
}

// Iterate through each Sibelius file
for i = 0 to Length(fileList) - 1
{
 sibFile = Sibelius.Open(fileList[i]);

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 5 JUNE 6, 2025

 if (sibFile = NULL)
 {
 Sibelius.MessageBox("Unable to open " & fileList[i]);
 continue;
 }
 textItems = sibFile.GetAllObjects("Text");
 for j = 0 to Length(textItems) - 1
 {
 if textItems[j].TextStyle = "Title" then
 {
 textItems[j].Visible = false;
 }
 }
 sibFile.Save();
 sibFile.Close();
}

Sibelius.MessageBox("Operation complete! Title text items are hidden in all files.");

Iterating through the Sibelius files

This code gets a single Sibelius file from the folder, and opens it if possible

// Iterate through each Sibelius file
for i = 0 to Length(fileList) - 1
{
 sibFile = Sibelius.Open(fileList[i]);
 if (sibFile = NULL)
 {
 Sibelius.MessageBox("Unable to open " & fileList[i]);
 continue;
 }

I will replace this with a normal way to do the same thing in ManuScript

Here is the syntax for getting files from a folder

o To get Sibelius score files (.sib), we can use for each SIB sibFile in folderMain. This will return a File
object. Since we already checked for the presence of .sib file in the folder, this should never fail,
and will return at least one .sib file.

o Sibelius.Open takes a file name (full path with extension), which we get from the File object
sibFile. If Open fails, there is no continue command to skip the file as the original code does.

o To simulate the continue effect, I check whether Open succeeded. If not, I put up a message
box, and nothing else will happen in the For loop. If it succeeded, the else clause is taken, and
the score will be processed.

for each SIB sibFile in folderMain
{

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 6 JUNE 6, 2025

 if (Sibelius.Open (sibFile.NameWithExt, True) = False) // open quietly
 {
 Sibelius.MessageBox("Unable to open " & sibFile.NameWithExt);
 }
 else // file was successfully opened. An opened file becomes the score object Sibelius.ActiveScore
 {

Processing SystemTextItem objects in the opened score

 textItems = sibFile.GetAllObjects("Text");
 for j = 0 to Length(textItems) - 1
 {
 if textItems[j].TextStyle = "Title" then
 {
 textItems[j].Visible = false;
 }
 }

There is no GetAllObjects method. Instead, we need to get a score object. Rather oddly, the opened
score is not returned by the Open command, but the variable Sibelius.ActiveScore is set to the
score that was opened.

This sometime fails for no obvious reason. To keep the plugin from crashing by trying to process a
null score, I added a check for score != null, and if null, the score will be skipped.

 score = Sibelius.ActiveScore;
 if (score != null) // this sometime fails
 {

Now that we have a valid score, we can look for Title text objects. We could look for them within a
Selection if we had one, or in a Staff or in a Bar. Knowing that Title text is a SystemTextItem
object, and that such objects live in the system staff, I do the equivalent of GetAllObjects like this:

 for each SystemTextItem sText in score.SystemStaff // need to make a selection or look in a staff
 {

If any SystemTextItem objects are found, they will be returned one by one in the variable sText.

There are many kinds of SystemTextItem objects – see the Text Styles section of Global
Constants in the ManuScript Reference for the list, names, and ids. These types are
differentiated by the StyleAsText and StyleId fields of the SystemTextItem object.

For Title text "Title" is the StyleAsText, and "text.system.page_aligned.title" is the
StyleId.I would normally use the StyleId here, since it is language-independent, but in order to stay
closer top the original code I will use the StyleAsText. This means the plugin will only work in
English.

 if (sText.StyleAsText = "Title")
 {
 sText.Hidden = True;
 }
 }

OK, Deep breath. This is what we have now.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 7 JUNE 6, 2025

// Prompt user for folder location

folderMain = Sibelius.SelectFolder ("Select a folder containing Sibelius files");
if (folderMain = null)
{
 Sibelius.MessageBox("No folder selected. Operation cancelled.");
 return False;
}

numFiles = folderMain.FileCount ("SIB");
if (numFiles = 0)
{
 Sibelius.MessageBox("No Sibelius files found in the selected folder.");
 return False;
}

for each SIB sibFile in folderMain
{
 if (Sibelius.Open (sibFile.NameWithExt, True) = False) // open quietly
 {
 Sibelius.MessageBox("Unable to open " & sibFile.NameWithExt);
 }
 else // file was successfully opened. An opened file becomes the score object Sibelius.ActiveScore
 {
 score = Sibelius.ActiveScore;
 if (score != null) // this sometime fails
 {
 for each SystemTextItem sText in score.SystemStaff // need to make a selection or look in a staff
 {
 // traces were used for debugging bz
 // trace("Run systext text, style as text: " & sText.Text & ", [" & sText.StyleAsText & "]");

 if (sText.StyleAsText = "Title")
 {
 //trace("title hidden: " & sText.Text); // extra added by bobz for debugging
 sText.Hidden = True;
 }
 }

 sibFile.Save();
 sibFile.Close();
 }
}

Sibelius.MessageBox("Operation complete! Title text items are hidden in all files.");

Saving, Closing, and saying goodbye

So now we just need to save and close the score. These commands don’t quite work.

 sibFile.Save();
 sibFile.Close();

This is what I will use instead:

 score.Save(); // this is a Score, not File command
 Sibelius.CloseAllWindowsForScore(score, False); // closes all open windows in the score. This is a Sibelius object command

There are lots of variants of Sibelius.Close, but this one will work the best here.

How there is just the final message to say we are done:

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 8 JUNE 6, 2025

Sibelius.MessageBox("Operation complete! Title text items are hidden in all files.");

I changed this slightly to include the number of files processed and added a return statement. And we
are done.

// added number of files processed to message bz
Sibelius.MessageBox("Operation complete! Title text items are hidden in " & numFiles & " files.");

return True;

Here is the fully translated plugin:

// Prompt user for folder location

folderMain = Sibelius.SelectFolder ("Select a folder containing Sibelius files");
if (folderMain = null)
{
 Sibelius.MessageBox("No folder selected. Operation cancelled.");
 return False;
}

numFiles = folderMain.FileCount ("SIB");
if (numFiles = 0)
{
 Sibelius.MessageBox("No Sibelius files found in the selected folder.");
 return False;
}

for each SIB sibFile in folderMain
{
 if (Sibelius.Open (sibFile.NameWithExt, True) = False) // open quietly
 {
 Sibelius.MessageBox("Unable to open " & sibFile.NameWithExt);
 }
 else // file was successfully opened. An opened file becomes the score object Sibelius.ActiveScore
 {
 score = Sibelius.ActiveScore;
 if (score != null) // this sometime fails
 {
 for each SystemTextItem sText in score.SystemStaff // need to make a selection or look in a staff
 {
 // traces were used for debugging bz
 // trace("Run systext text, style as text: " & sText.Text & ", [" & sText.StyleAsText & "]");

 if (sText.StyleAsText = "Title")
 {
 //trace("title hidden: " & sText.Text); // extra added by bobz for debugging
 sText.Hidden = True;
 }
 }

 score.Save(); // this is a Score, not File command
 Sibelius.CloseAllWindowsForScore(score, False); // closes all open windows in the score. This is a Sibelius object command
 }
 }
}

// added number of files processed to message bz
Sibelius.MessageBox("Operation complete! Title text items are hidden in " & numFiles & " files.");

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 9 JUNE 6, 2025

return True;

This code will only hide Title text. You can get it to do more things by changing the code
around the block

 if (sText.StyleAsText = "Title")
 {
 //trace("title hidden: " & sText.Text); // extra added by bobz for debugging
 sText.Hidden = True;

 }

For example, to make it hide Composer and Lyricist text as well as title, you could check more
StyleAsText values. If you do that as shown below, be sure to parenthesize each condition, since
ManuScript’s order of evaluation is left-to-right only, with no operator precedence. Watch that you
spell the names exactly as defined and in the correct case, and that you are using plain, not curly,
double quotes.

You might end up with this:

 if ((sText.StyleAsText = "Title") or (sText.StyleAsText = "Composer") or (sText.StyleAsText = "Lyricist"))
 {
 //trace("text hidden: " & sText.Text); // trace added by bobz for debugging
 sText.Hidden = True;

 }

Making a plugin that uses this code.

The easiest way to get to a working plugin it to go to File>Plug-ins>Edit plug-in, and press the
New… button

It will ask for a (file) name, a menu name, and a Category name. The category is the name of a
subfolder of the user plugins folder. “Other” will always be there, so it will work here.

I am calling the file HideTitleTextInFolder. The file name should have no spaces. The menu name
is what Sibelius will show you. I always make the menu name be the file name with spaces between
the words.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 10 JUNE 6, 2025

Once you OK the New dialog, you will return to Edit Plugins. Look for Other in the list on the left,
and inside Other look for Hide Title Text In Folder. You can use the Find box to make this easier
to find. Select it and press the Edit… button.

This will open an editing window. Double click on the name Run, and it will open up a window editing
the Run method.

You will see a Sibelius.MessageBox line. Press Delete to have an empty Run.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 11 JUNE 6, 2025

Now copy all the text of the translated plugin and paste it into the edit window. Press Check Syntax,
which should show no errors. If there are errors, you will need to figure out how to correct them.

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 12 JUNE 6, 2025

Press OK once satisfied, then press OK or Close to close each dialog until you are back at the score.

To test, I suggest making a folder containing 2 or 3 scores. I would have a normal title in one score, a
title using a wildcard in another, and no title in the 3rd.

Be sure that none of the scores in that folder are open before you run the plugin.

Run the plugin, which should give you a dialog to choose a folder. Choose your folder and the plugin
will run. At the end you should see a message box like this:

F:\WORD DOCUMENTS\SIBELIUS PLUGINS\DESIGN AND ANALYSIS DOCUMENTS\TRANSLATING A POSSIBLY AI SIBELIUS PLUGIN TO MANUSCRIPT.DOCX PAGE 13 JUNE 6, 2025

There are lots of details this plugin will not cover well, and I would not publish a plugin in this state,
but what we have is a pretty direct translation of the original plugin code. It should do the task it was
asked to do.

Good luck!

